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On July 11th, 2019, the workshop on "Sine-Square Deformation and 
related topics 2019," was held at RIKEN Wako Campus. It is a sequel to 

the previously held workshop on June 22nd, 2017 at RIKEN Wako 
Campus. The aim of the workshop is  to study  Sine-square 

deformation (SSD), which is a new type of boundary condition at which 
the coupling constant of the system is spatially modulated. Since its 
inception, SSD has been studied in various contexts including string 
theory, condensed matter physics and quantum field theory. This 

workshop provided a unique opportunity for the researchers working 
on the subject from various disciplines to get together and exchange 
their knowledge and perspectives. We were able to invite a large 
portion of the researchers who are actively contributing to the 

subject, including Dr. Nishino, who initiated the subject. 
This document contains the slide shown by the speakers at the 

workshop. Since all the presentations were given in Japanese, some 
part of the slides are in Japanese

Organizers:  
Nobuyuki Ishibashi (Tsukuba), Hosho Katsura (Tokyo), 
Kouichi Okunishi (Niigata), Tsukasa Tada(RIKEN)



Workshop Program
10:00 ~ 10:45　Tomotoshi Nishino (Kobe) 「エネルギースケール変換から SSD へ、辿った経緯と未着手の問題」 
10:55 ~ 11:25　Hosho Katsura (Tokyo) 「ディリクレ・ノイマン混合境界条件と half SSD」 
11:35 ~ 12:20　Tomohiko Takahashi (Nara W.)  「タキオン真空とサイン二乗変形」 
     lunch 
13:20 ~ 14:05　Shinsei Ryu (Chicago), "Holographic duals of inhomogeneous 1d quantum many-body systems” 
14:15 ~ 14:45　Toshiya Hikihara (Gunma) 「様々なエネルギースケール変換による一次元量子系の特性変化」 
14:45 ~ 15:00　Syoji Zeze (Yokote Seiryou H.), ”Virasoro algebra in K-space” 
     break 
15:30 ~ 16:15　Naokazu Shibata (Tohoku)　「SSDを用いたフラストレート量子スピン系および多自由度電子系の解析」 
16:25 ~ 17:10　Kouichi Okunishi (Niigata)　「XXZ鎖における格子Unruh効果と世界線エンタングルメント」 
17:20 ~ 18:00　Tsukasa Tada(RIKEN), ”Perspectives from Sine-square deformation on conformal field theories”



Quantum-Classical correspondence and Energy Scale Deformations
Tomotoshi Nishino (Kobe Univ.) 
Roman Krcmar (SAS) 
Andrej Gendiar (SAS) 
… anonymous referee …

* Uniform Hamiltonian does not always have uniform ground state.

- Charge/Spin density wave, commensurate or incommensurate

arXiv:0810.0622
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Modulation of Local Magnetization in two-dimensional Axial-Next-Nearest-Neighbor

Ising model
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The axial next-nearest-neighbor Ising model is studied in two dimensions at finite temper-

ature using the density matrix renormalization group. The model exhibits phase transition of

the second-order between the antiphase in low temperature and the modulated phase in high

temperature. Observing the domain wall free energy, we confirm that the modulation period

in high-temperature side is well explained by the free-fermion picture.

KEYWORDS: incommensurate phase, ANNNI model, DMRG

1. introduction

Periodically modulated structures may occur in a
wide range of physical systems. As examples of such
systems, La6Ca8Cu24O41 and Ca2Y2Cu5O10 are well
known,1, 2 where spins of the copper atoms interact
ferromagnetically between the neighboring sites along
the CuO2 chains and antiferromagnetically between the
next-nearest-neighboring ones. A phase transition of
commensurate-incommensurate type was observed in
these systems. Another example is cerium antimonide
(CeSb)3 which has a nontrivial phase diagram and which
shows modulated spin patterns with various periodic-
ities. In some ferroelectric materials, such as NaNO3,
the modulated phases are present between the ferro-
electric low-temperature state and the paraelectric high-
temperature one.4, 5

Physical properties of magnetically modulated struc-
tures can be described by simplified models with com-
peting interactions. One of the simplest examples is
the so-called axial next-nearest-neighbor Ising (ANNNI)
model, which contains ferromagnetic coupling J1 be-
tween nearest-neighbor spin pairs and antiferromagnetic
one J2 between next-nearest-neighbor spin pairs in a pre-
ferred direction.6 Several analytical methods have been
developed to study the phase diagram of the ANNNI
model in two dimensions. For instance, the free-fermion
approximation treats domain walls running along the
chain direction.7, 8 The Müller-Hartmann-Zittartz ap-
proach assumes existence of the domain wall in the per-
pendicular direction to the axial one.9 A detailed survey
of earlier works on this topic has been reviewed by Selke.6

Recent progress can be found in Refs. [10-12].
In this paper we focus on the two-dimensional (2D)

ANNNI model, which is described by the Hamiltonian

H = −J1
∑

i,j

σi,j(σi+1,j + σi,j+1)− J2
∑

i,j

σi,jσi+2,j (1)

on a square lattice, where the index i specifies the po-
sition along the axial direction. The Ising spins σi,j =
↑ or ↓ interact ferromagnetically (J1 > 0) between the
nearest neighbors and antiferromagnetically (J2 < 0) be-
tween the next-nearest neighbors. The ratio between the
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Fig. 1. The ordered phases of the 2D ANNNI model.

coupling constants κ = −J2/J1 is commonly used for the
measure of the frustration. It is widely accepted that in
the low temperature region the model shows a ferromag-
netic structure when κ < 0.5, and when κ is larger than
0.5, the so-called antiphase structure {· · · ↑↑↓↓↑↑ · · · } is
realized.6–10, 15, 19, 20 Figure 1 shows the location of these
ordered phases. It has been confirmed that these ordered
phases are bordered by the second order phase transition
lines.
There is an argument about the presence of incom-

mensurate (IC) phase in the highly frustrated region,
which is specified by the condition κ > 0.5. Though a
wide area of the IC phase is expected by the mean-field
theory, the Monte Carlo (MC) simulation by Sato and
Matsubara suggests that the region of the IC phase is
very small.15 Recently, Shirahata and Nakamura per-
formed an extensive calculation by use of the non-
equilibrium relaxation method.10 Assuming the pres-
ence of the Berezinskii-Kosterlitz-Thouless (BKT) tran-
sition13, 14 they estimated two critical temperatures bor-
dering the IC phase. What they found is that these two
transition temperatures are almost identical. They spec-
ulated that successive phase transitions may occur within
an infinitesimally narrow temperature region. Table 1

1
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summarizes these theoretical and numerical estimates
of the phase transition temperatures at κ = 0.6, where
the Tc represents the upper border of the antiphase, and
where T ′ is the lower border of the paramagnetic phase.
(The IC phase is present if T ′ is larger than Tc .)
The aim of our study is to obtain the precise mod-

ulation period of the local magnetization and its decay
factor in the parameter region where the presence of IC
phase has been discussed. For this purpose we employ
the density matrix renormalization group (DMRG)16–18

method, and carry out a scaling analysis on the domain-
wall free energy. As shown in the following, we confirm
that the modulation period is well explained by the free-
fermion picture.

2. Application of DMRG

We consider the 2D ANNNI model on the square
lattice of the size L × ∞. The transfer matrix
of this system TL [σ′|σ] connects two adjacent spin
rows [σ′] ≡ {σ1,j,σ2,j , . . . ,σL,j} and [σ] ≡ {σ1,j−1,
σ2,j−1, . . . ,σL,j−1}, where index i runs from 1 to L to-
ward the axial direction. For simplicity, we drop out the
indices j and j − 1 from the Ising spin variables in the
following, and write them as [σ′] ≡ {σ′

1,σ
′
2, . . . ,σ

′
L} and

[σ] ≡ {σ1, σ2, . . . ,σL}. Without loss of generality, the
transfer matrix can be written as the product of the over-
lapped local weights

TL [σ′|σ] =
L−2
∏

i=1

W (σ′
iσ

′
i+1σ

′
i+2|σiσi+1σi+2) , (2)

where W (σ′
iσ

′
i+1σ

′
i+2|σiσi+1σi+2) is the local Boltzmann

weight associated with the HamiltonianH in Eq. (1).11, 23

The DMRG is employed to solve the eigenvalue prob-
lem

∑

[σ]

TL [σ′|σ] ΨL[σ] = λL(T )ΨL[σ
′] (3)

with λL(T ) is the largest eigenvalue of the transfer ma-
trix and ΨL[σ] the corresponding eigenvector. We em-
ploy two different boundary conditions: the parallel ones
(σ1 = σ′

1 =↑ and σL = σ′
L =↑) and the antiparallel ones

(σ1 = σ′
1 =↑ and σL = σ′

L =↓), respectively, for which

we calculate the largest eigenvalues λ↑↑
L (T ) and λ↑↓

L (T ).
For the visualization of the spin modulation, we calculate
the local magnetization

〈σi〉 =
∑

[σ] ΨL[σ]σiΨL[σ]
∑

[σ] ΨL[σ]ΨL[σ]
(4)

Table I. Critical temperatures at κ = 0.6 known so far.

Method used Tc T ′

Müller-Hartmann-Zittartz9 1.09 —
Phenomenological renorm.8 1.05 1.35
Saqi and McKenzie19 1.05 1.40
Cluster variation method20 0.91 1.64
Cluster heat bath method15 0.91 1.16
Free-fermion approximation7 0.907 1.20
Non-equilibrium Relaxation10 0.89(2) 0.895(25)
DMRG (this work) 0.907 —
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Fig. 2. The local magnetization 〈σi〉 calculated for L = 118 (i =
1, 2, . . . , 118) with parallel and antiparallel boundary conditions.

as a function of position i during the last sweep in the
zipping process of the finite-system DMRG.16 We keep
at most m = 70 block-spin states and vary the lattice
size from L = 38 to L = 118. Note that under these con-
ditions the density matrix truncation error16–18 is kept
within ε ≤ 10−13.
We use dimensionless units kB =J1 =1 throughout

this article. We focus on analysis of the model at κ = 0.6,
where the competing interaction plays an important role
on the spin modulation. Figure 2 shows the local mag-
netization 〈σi〉 at κ = 0.6 under and over a transition
temperature Tc ≈ 0.91 which we will determine more
precisely. The complete antiphase structure {↑↑↓↓} is ob-
served at T = 0.88 if the parallel boundary conditions are
imposed (the uppermost) and a twisted pattern created
by a running domain wall is observed for the antipar-
allel conditions (the second from top). The remaining
two panels display 〈σi〉 at T = 0.93, where a modulated
structure is present for the parallel conditions (the third
panel) and the antiparallel ones (the fourth). Note that
the modulation period depends on the applied boundary
conditions.

3. Modulation Period

For the purpose of characterizing the spin modulation,
we introduce the “domain-wall free energy”21

FDW(T, L) = (−1)n(L)kBT ln
λ↑↓
L (T )

λ↑↑
L (T )

, (5)

where n(L) = [L/2 + 2] + L + 1 represents the 4-site
periodicity in the antiphase. The FDW(T, L) represents
the sensitivity of the free energy per lattice row to the
boundary conditions. In the antiphase region, FDW(T, L)
exhibits the L dependence

FDW(T, L) ∼ FDW(T,∞) + c(T )L−2, (6)

- ex. Axial Next Nearest Neighbor Ising (ANNNI) model

ar
X

iv
:c

on
d-

m
at

/0
60

54
11

v2
  [

co
nd

-m
at

.st
at

-m
ec

h]
  1

8 
Ju

l 2
00

6

Typeset with jpsj2.cls <ver.1.2> Full Paper

Modulation of Local Magnetization in two-dimensional Axial-Next-Nearest-Neighbor

Ising model
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1. introduction

Periodically modulated structures may occur in a
wide range of physical systems. As examples of such
systems, La6Ca8Cu24O41 and Ca2Y2Cu5O10 are well
known,1, 2 where spins of the copper atoms interact
ferromagnetically between the neighboring sites along
the CuO2 chains and antiferromagnetically between the
next-nearest-neighboring ones. A phase transition of
commensurate-incommensurate type was observed in
these systems. Another example is cerium antimonide
(CeSb)3 which has a nontrivial phase diagram and which
shows modulated spin patterns with various periodic-
ities. In some ferroelectric materials, such as NaNO3,
the modulated phases are present between the ferro-
electric low-temperature state and the paraelectric high-
temperature one.4, 5

Physical properties of magnetically modulated struc-
tures can be described by simplified models with com-
peting interactions. One of the simplest examples is
the so-called axial next-nearest-neighbor Ising (ANNNI)
model, which contains ferromagnetic coupling J1 be-
tween nearest-neighbor spin pairs and antiferromagnetic
one J2 between next-nearest-neighbor spin pairs in a pre-
ferred direction.6 Several analytical methods have been
developed to study the phase diagram of the ANNNI
model in two dimensions. For instance, the free-fermion
approximation treats domain walls running along the
chain direction.7, 8 The Müller-Hartmann-Zittartz ap-
proach assumes existence of the domain wall in the per-
pendicular direction to the axial one.9 A detailed survey
of earlier works on this topic has been reviewed by Selke.6

Recent progress can be found in Refs. [10-12].
In this paper we focus on the two-dimensional (2D)

ANNNI model, which is described by the Hamiltonian

H = −J1
∑

i,j

σi,j(σi+1,j + σi,j+1)− J2
∑

i,j

σi,jσi+2,j (1)

on a square lattice, where the index i specifies the po-
sition along the axial direction. The Ising spins σi,j =
↑ or ↓ interact ferromagnetically (J1 > 0) between the
nearest neighbors and antiferromagnetically (J2 < 0) be-
tween the next-nearest neighbors. The ratio between the
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Fig. 1. The ordered phases of the 2D ANNNI model.

coupling constants κ = −J2/J1 is commonly used for the
measure of the frustration. It is widely accepted that in
the low temperature region the model shows a ferromag-
netic structure when κ < 0.5, and when κ is larger than
0.5, the so-called antiphase structure {· · · ↑↑↓↓↑↑ · · · } is
realized.6–10, 15, 19, 20 Figure 1 shows the location of these
ordered phases. It has been confirmed that these ordered
phases are bordered by the second order phase transition
lines.
There is an argument about the presence of incom-

mensurate (IC) phase in the highly frustrated region,
which is specified by the condition κ > 0.5. Though a
wide area of the IC phase is expected by the mean-field
theory, the Monte Carlo (MC) simulation by Sato and
Matsubara suggests that the region of the IC phase is
very small.15 Recently, Shirahata and Nakamura per-
formed an extensive calculation by use of the non-
equilibrium relaxation method.10 Assuming the pres-
ence of the Berezinskii-Kosterlitz-Thouless (BKT) tran-
sition13, 14 they estimated two critical temperatures bor-
dering the IC phase. What they found is that these two
transition temperatures are almost identical. They spec-
ulated that successive phase transitions may occur within
an infinitesimally narrow temperature region. Table 1

1



Energy Scale Deformation
* There is a modulated Hamiltonian whose ground state is uniform.

- (modulated/inhomogeneous) AKLT Hamiltonian

- Slow energy scale modulation would not affect a gapped ground state

general framework arXiv:cond-mat/0702581

- empty state of any Fermionic system (too trivial!)
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Wilson-like real-space renormalization group and low-energy effective spectrum of

the XXZ chain in the critical regime

Kouichi Okunishi

Department of Physics, Niigata University, Igarashi 2, Niigata 950-2181, Japan.

We present a novel real-space renormalization group(RG) for the one-dimensional XXZ model
in the critical regime, reconsidering the role of the cutoff parameter in Wilson’s RG for the
Kondo impurity problem. We then demonstrate the RG calculation for the XXZ chain with
the free boundary. Comparing the hierarchical structure of the obtained low-energy spectrum
with the Bethe ansatz result, we find that the proper scaling dimension is reproduced as a fixed
point of the RG transformation.

KEYWORDS: real-space renormalization group, spin chain, cutoff, Bethe ansatz, scaling dimension

In the last decade, the density matrix renormaliza-
tion group(DMRG) has been the most reliable numer-
ical renormalization group(NRG) for the ground-state of
the one-dimensional(1D) quantum many body system.1

Before DMRG, however, the conventional NRG scheme
such as a block spin transformation often failed for the
1D quantum system. The reason for this was analyzed
carefully by White;2 the effect of the boundary is signif-
icant in the 1D system, and his DMRG algorithm over-
come it successfully. On the other hand, Wilson’s NRG
procedure for the Kondo impurity problem3, 4 has been
highly successful for solving the various impurity prob-
lems. In Wilson’s NRG scheme, the log-discretized energy
shells for the s-wave electrons are mapped into an effec-
tive tight binding model with a cutoff parameter, which
is essentially the 1D quantum many body problem with
a boundary. However, it should be remarked that Wil-
son’s NRG is efficient for the gapless system, in contrast
to the DMRG which prefers the gapful system.
In this paper, we focus on the NRG for the gapless 1D

quantum spin system; Wilson’s NRG for the impurity
problem is reconsidered in the context of the 1D quantum
spin chain. The essence of the idea is very simple; remove
the impurity site and add the interacting spins instead of
the free electrons in the impurity problem. Such an ap-
proach without the cutoff parameter was tested by Xiang
et al in the almost the same timing as the DMRG, but
it seems more suitable for the gapful spin chain.5 Also,
the infinite-system-size DMRG still cannot overcome the
critical fluctuation in the 1D critical system in the bulk
limit; An essential point in the present approach for the
critical system is that we introduce the cutoff parameter
controlling the energy scale of the system, which plays
an important role in the RG transformation.
In the following, we briefly formulate the Wilson like

NRG for the XXZ spin chain, where we emphasize the
role of the cutoff parameter. Numerical calculations are
actually performed for the XXZ chain in the critical re-
gion, and the obtained results are analyzed on the basis
of the Bethe ansatz/CFT solution. We then find that the
low-energy excitation spectrum of the XXZ spin chain is
successfully reproduced as a fixed point of the RG trans-
formation.

In this paper, we deal with the S = 1/2 XXZ chain in
the critical regime for simplicity, but the formulation for
the general case is straightforward. We write the local
Hamiltonian of the XXZ chain as

hn,n+1 = Sx
nS

x
n+1 + Sy

nS
y
n+1 +∆Sz

nS
z
n+1, (1)

where !S is the S = 1/2 spin matrices and 0 ≤ ∆ ≤ 1 is
assumed. We then consider the Hamiltonian of N spins
with the cutoff Λ as

HN (Λ) =
N−1
∑

n=1

ΛN−n−1hn,n+1, (2)

for which the free-boundary condition is basically as-
sumed. If Λ = 1, eq. (2) becomes the uniform XXZ chain
with the free-boundary condition. In Wilson’s original
NRG for the Kondo problem, there is an impurity at the
n = 0 site, and hn,n+1 should be the tight binding free
electrons. In the present case, n = 0 is the empty site
and the interacting spins are adopted as hn,n+1.
In order to treat matrices having different sizes in the

RG transformation, we use the notation for a m × m
matrix X :

X∗ = I ⊗X, (3)

where I is the 2 × 2 identity matrix for the space of the
spin added, and thus, X∗ becomes a 2m × 2m matrix.
The recursion relation between the N - and N + 1-spin
systems is given by

HN+1(Λ) = ΛH∗
N(Λ) + hN,N+1. (4)

In this recursion relation, the smallest energy scale is
fixed to be in the order of unity. If Λ = 1, we do not
touch the energy scale of the system, leading the simple
recursion relation for extending the system size. For Λ >
1, a new spin having a smaller energy scale is added to
the bulk part of the system. Thus the outer spins(the
smaller index of n) has the higher energy scale.6

Now we convert the basis so as to diagonalize HN (Λ),

HN (Λ)UN = UNωN , (5)

where ω are the eigenvalues of the Hamiltonian and U
are the corresponding eigenvectors. By maintaining the

1

2

II. MODEL AND SCALE FREE PROPERTY

In Wilson NRG, the essential point is to consider the
1D lattice fermion model mapped from the degenerating
free electrons around the Fermi surface. We thus start
with the Wilson-type Hamiltonian of the spinless free
fermions with the exponentially modulated hopping

Hλ =
N−1
∑

n=1

eλn(c†n+1cn + c†ncn+1), (1)

where cn is a fermion annihilation operator at nth site
and N denotes the number of sites. We have also intro-
duced Λ ≡ exp(λ) > 1 for later convenience. Thus n = 1
corresponds to the smallest energy scale and n = N does
to the impurity site with the largest energy scale18. Al-
though, in the original work5, the hopping parameter has
a supplemental coefficient and n in eλn term takes a half
integer, the essential physics is the same as Eq. (1).
Let us write the one-particle state as |ψ〉 =

∑

n ψ(n)c
†
n|0〉. Then one-particle Schrödinger equation

in the bulk region is

e−λψ(n− 1) + ψ(n+ 1) = Ee−λnψ(n). (2)

Note that Eq. (2) is invariant under the transformation,
ψ(n) → (−1)nψ(n) and E → −E, which clearly rep-
resents the particle-hole symmetry. Thus, we basically
consider the positive energy solution.
Since the system has no explicit translational sym-

metry, we employ numerical diagonalization of Eq. (2)
rather than the usual Fourier analysis, for a finite but
sufficiently large system. We assume the free boundary
condition and thus what we deal with is the tridiagonal
matrix. Figure 1 represents the absolute value of the
one-particle spectrum for λ = 0.1 and N = 200, where j
indicates the label of the eigenvalue in increasing order.
The Fermi surface is located between j = 100 and 101,
and j ≤ 100 represent negative energy eigenvalues. Thus,
the parity in Fig. 1 corresponds to the particle-hole sym-
metry. We also show the amplitude of the wavefunctions
corresponding to j = 101, 130 and 160th eigenvalues, in
Fig. 2.
The most important behavior in Fig. 1 is that, as

was already mentioned in Ref.5, E basically exhibits the
exponential dependence E ∝ ± exp(λj). We call this re-
gion of the exponential dependence as “bulk”, since the
corresponding wavefunctions are localized in the bulk re-
gion of the chain, as can be seen for j = 130 and 160 in
Fig.2. On the other hand, we can see that some eigenval-
ues near the Fermi surface j ∼ 100 deviate from the bulk
lines. We call these states as “edge states”, since they
correspond to the edge modes near the Fermi surface, as
is the wavefunction of j =101 in Fig. 2.
We analyze the bulk part of the spectrum in detail.

In connection with the exponential dependence of the
eigenvalues, an essential information can be found in the
bulk wavefunctions for j = 130 and 160 in Fig. 2. The

0 20 40 60 80 100 120 140 160 180 20010-2
10-1
100
101
102
103
104
105
106
107
108

j

|E
|

 λ  =0.1, N=200

FIG. 1: (Color online)One-particle eigenvalue spectrum of Eq.
(2). The horizontal axis j indicates the label of the eigenvalue
in increasing order.
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-0.2
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0.4

n

j=130 j=160

ψ
(n

)

j=101

FIG. 2: (Color online)One-particle wavefunction ψ(n) of j =
101, 130 and 160. The horizontal axis means the cite index n.
The bulk states ψ(n) of j = 130 and 160 can be overlapped
with each other by a lattice translation, while ψ(n) of j = 101
is the edge state.

primary notable point is that these wavefunctions have
a very similar wavepacket-like shape, in contrast to the
usual plane wave for the uniform chain. The localization
of the wavefunction can be qualitatively understood as
follows. If a particle carrying a certain energy goes in
the larger n region, the particle can not excite the larger
energy bonds, into which the wavefunction can not pen-
etrate. While the particle goes to the smaller n region,
the bond of the smaller coupling can not carry the total
energy of the particle and thus the wavefunction decays
very rapidly.
Another important property of the bulk wavefunctions

is that they can be overlapped with each other by the
lattice translation; In Fig. 2, the wavefunctions of j =130
and 160 have the very similar shape. Indeed, we can
verify that overlap integral of the two wavefunctions after
the lattice translation is unity within the computational
accuracy. In order to see this property in analytic level,
we introduce

ψ(n) ≡ e−λn/2φ(n). (3)

arXiv:1001.2594wilson lattice 

- Exponential Deformation (Wilson, …, Okunishi)

since H = sum of projectors, and pre factor can be arbitral

if the modulation is slow enough (or gap is wide enough)



a classical counterpart: Hyperbolic Lattice
Ising model on Hyperbolic Lattice

- there is ferro-para phase transition

probably, in anisotropic limit (how to define this limit?),  
one reaches the hyperbolic deformation.
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Phase Transition of the Ising model on a Hyperbolic Lattice
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3Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 11, Bratislava, Slovakia
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The matrix product structure is considered on a regular lattice in the hyperbolic plane. The
phase transition of the Ising model is observed on the hyperbolic (5, 4) lattice by means of the
corner-transfer-matrix renormalization group (CTMRG) method. Calculated correlation length
is always finite even at the transition temperature, where mean-field like behavior is observed.
The entanglement entropy is also always finite.

KEYWORDS: DMRG, CTMRG, Hyperbolic, Entanglement

1. Introduction

Classification of phase transitions is one of the central
issue in the study of lattice models in statistical mechan-
ics. When a system exhibits the second-order transition,
normally the correlation length diverges at the transition
point. As a result of scale invariance at the criticality, the
transitions are characterized by scaling indices, where
their values are completely classified in two-dimension
by means of the conformal field theory.
The mean-field like 2nd-order transition is exceptional

in the point that the correlation length may not play an
important role, in particular when the transition is de-
scribed by the Landau free energy that is expressed as a
simple polynomial of the order parameter.1) In this ar-
ticle we focus on the mean-field like transition observed
for the Ising model on the hyperbolic lattices,2–11) the
regular lattice in two-dimensional (2D) plane with con-
stant negative curvature.12) Among the hyperbolic (p, q)-
lattices, which are the tessellations of the regular p-gons
with the coordination number q,13) we consider the (5, 4)-
lattice shown in Fig. 1 as an example. We calculate the
correlation length ξ and entanglement entropy S in the
neighborhood of the second-order transition temperature
T0 , and judge whether or not the system is critical at this
temperature.
In the next section we explain the matrix product

structure of the Ising model on the (5, 4)-lattice. We em-
ploy the corner transfer matrix renormalization group
(CTMRG) method,14, 15) a variant of the density ma-
trix renormalization group (DMRG) method16–18) ap-
plied to 2D classical models,19) to obtain the thermody-
namic properties of the model. We show the calculated
results on ξ and S in §3. Conclusions are summarized in
the last section.

2. Matrix Product Structure on the Hyperbolic
Lattice

Consider the ferromagnetic Ising model on the (5, 4)-
lattice shown in Fig. 1. Each pair of neighboring sites is
on a geodesic, which is drawn either by a line that passes
through the center of the disk or by an arc. When there

P!
P!

P!

P!
P!

P!P!

P!

P!

P!

Fig. 1. The hyperbolic (5, 4) lattice drawn in the Poincaré disk.
Open circles denote lattice points, where there are Ising spin
variables. Those regions denoted by P correspond to half-column
transfer matrices.

is no external magnetic field, the Hamiltonian is given
by

H = −J
∑

〈ij〉

σiσj , (2.1)

where σi = ±1 denotes the Ising spin variable at the i-th
site, and where J > 0 is the coupling strength between
neighboring pair of sites denoted by 〈ij〉. It is convenient
to introduce the interaction-round-a-face (IRF) Boltz-
mann weight

Wijk!m = (2.2)

exp

[

−β
J

2
(σiσj + σjσk + σkσ! + σ!σm + σmσi )

]

for each pentagon, where i, j, k, $ and m denote the sites
around it, and where β represents the inverse temper-
ature. The partition function of the system is then ex-

1

- always off critical

- row-to-row transfer matrix can be defined

- is it possible to find out the corresponding 
quantum Hamiltonian? (I have no answer)
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2 J. Phys. Soc. Jpn. Full Paper Author Name

where J ≥ 0 represents the interaction parameter. Be-
fore considering the deformed Hamiltonian Hcosh(λ) in
Eq. (1.3), let us observe effects of the exponential defor-
mation in Eq. (1.1). For latter convenience we treat the
system whose linear size is 2N + 2. The exponentially
deformed Hamiltonian is then written as

Hexp(λ) =
N
∑

j=−N

ejλ hj,j+1 , (2.3)

where the deformation parameter λ is real and positive.10

When λ = 0 the above Hamiltonian Hexp(λ) coincides
with the uniform Hamiltonian H in Eq. (2.1).
It is known that the factor Λ = eλ controls the eigen-

value structure.5, 6 In order to observe the fact briefly,
let us consider the infinite system size limit N → ∞. To
simplify the discussion we assume that the ground state
energy E0 is zero, and all other eigenvalues are positive.
This assumption can be satisfied by adding appropriate
constant to each neighboring interaction hj,j+1.

11

Consider a right shift operation S that moves the lat-
tice sites by one to the right direction. It is obvious that
S†, the conjugate of S, represents the left shift operation,
and therefore SS† = S†S = 1 is satisfied. If we apply S
to Hexp(λ) when the system size is infinite, we obtain
the following relation

S Hexp(λ)S† =
∞
∑

j=−∞

ejλ
(

S hj,j+1 S
†
)

(2.4)

=
∞
∑

j=−∞

ejλ hj+1,j+2

=
∞
∑

j=−∞

e(j−1)λ hj,j+1 = e−λ Hexp(λ) .

As a result of translation the deformation parameter ejλ

is modified to e(j−1)λ, and this modification can simply
be expressed by multiplying the factor e−λ to Hexp(λ).
This translation property in Hexp(λ) restricts the eigen-
value structure, which is obtained from the eigenvalue
relation

Hexp(λ) |Ψ〉 = E |Ψ〉 . (2.5)

If there is an eigenstate |Ψ〉 the shifted state S |Ψ〉 is also
an eigenstate, since we have the relation
[

S Hexp(λ)S†
]

S |Ψ〉 = S Hexp(λ) |Ψ〉 = ES |Ψ〉 , (2.6)

and using the relation in Eq. (2.4) we can verify that
[

e−λ Hexp(λ)
]

S |Ψ〉 = E S |Ψ〉 (2.7)

is satisfied. Thus if the eigenvalue E in Eq. (2.5) is posi-
tive, there is a family of eigenvalues

. . . , e−2λ E, e−λ E, E, eλ E, e2λ E, . . . , (2.8)

that are equidistant in logarithmic scale. Such a positive
energy eigenstate |Ψ〉 is not translationally invariant, and
the orthogonality

〈Ψ|S |Ψ〉 = 0 (2.9)

is satisfied.

It should be noted that presence of periodic eigenstates
are not excluded. For example, if there is unique zero-
energy eigenstate |Φ〉, it is translationally invariant. This
is because Eq. (2.7) shows that S |Φ〉 is also the zero
energy state. Thus we can say that if the zero-energy
state is unique, it satisfies the translational invariance

S |Φ〉 = |Φ〉 . (2.10)

As an extension one can consider digenerated case, where
there are two zero-energy eigenstates |Φa〉 and |Φb〉 that
satisfies

|Φb〉 = S |Φa〉

|Φa〉 = S |Φb〉 . (2.11)

This is the case when there is dimerization in the ground
state. This degeneracy would be lifted by the effect of
boundary when the system size 2N + 2 is finite. It is
straightforward to extend the argument of degeneracy to
trimerized state, etc.
It is possible to consider various generalizations of

Hexp(λ). As an example one can consider the deformed
tight-binding Hamiltonian

Hexp
t.b.(λ) =

∞
∑

j=−∞

ejλ
[

−t (c†j+1cj + c†jcj+1)

+ (−1)j
∆

2
(c†jcj − c†j+1cj+1)

]

(2.12)

for spinless lattice Fermions, where t represents the hop-
ping parameter and where ∆ the band gap. Since this
Hamiltonian contains oscillating potential, the transla-
tion period is 2-site when λ = 0. Thus for this de-
formed Hamiltonian Hexp

t.b.(λ) one should modify the rela-
tion Eq. (2.4) according to this period. It can be verified
that all the one-particle states |Ψ〉 satisfy the orthogo-
nality in Eq. (2.9), and are represented by localized wave
functions similar to wavelet basis function. The half-filled
state |Φ〉 has finite excitation gap, where |Φ〉 is periodic
and satisfies S2 |Φ〉 = |Φ〉. When λ = 0 the one-particle
eigenfunctions and energy spectrum is explained by the
Bloch’s theorem. It is not trivial how such an energy
structure is destructed by the introduction of exponen-
tial deformation. It is straightforward to generalize the
exponential deformation to systems that contain inter-
actions of longer range.

3. Hyperbolic Deformation

The eigenvalue distribution of Hexp(λ) explained in
the last section prevents numerical study of the bulk
property of the system around the center j = 0. This
is because the energy scale in the left side of the system
(j < 0) is smaller than that at the center, and to ap-
ply the DMRG method to such system is difficult. This
problem can be avoided if we take an average between
Hexp(λ) and Hexp(−λ) as

Hcosh(λ) =
1

2

[

Hexp(λ) +Hexp(−λ)
]

=
N
∑

j=−N

cosh jλ hj,j+1 . (3.1)

ground-state is uniform, except for the edge state,  
as it was observed in the case of exp. deformation.



* Corner Hamiltonian ~ Entanglement Hamiltonian
- Okunishi proposed a quantum counterpart of CTMRG
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the eigenvalue spectrum of the corner Hamiltonian can
be scaled by one parameter to the corresponding spec-
trum(logarithm) of the reduced density matrix. More-
over, we analyze the “spectral flow” of the corner Hamil-
tonian for the S = 1 bilinear-biquadratic chain. In §5, we
summarize our results and discuss further implications of
the eigenvalue spectrum of the corner Hamiltonian.

II. FORMULATION

A. definitions

In this section we consider the S = 1/2 XXZ spin chain
for convenience. However, the arguments in the following
can be generalized straightforwardly to the general 1D
quantum systems. We write the local Hamiltonian of the
XXZ spin chain as

hn,n+1 = Sx
nS

x
n+1 + Sy

nS
y
n+1 +∆Sz

nS
z
n+1, (3)

where !S is the S = 1/2 spin(not Pauli) matrix. The
matrix element of (3) is labeled by the spin indices sn,
sn+1 and s′n, s

′
n+1. However, we do not show explicitly

such spin indices without necessity.
Let us denote the Hamiltonian of N spins as

HN =
N−1∑

n=1

hn,n+1, (4)

for which the free boundary condition is basically as-
sumed. In the context of the DMRG, HN is the right-
half(or left-half) block of the total Hamiltonian and, in
this labeling of the site index, n = 1(N) is assigned to
the center(edge) of half of the system.
We further define the corner Hamiltonian as

KN =
N−1∑

n=1

nhn,n+1, (5)

whose graphical representation is depicted in Fig. 1. As
noted in the introduction, the corner Hamiltonian is the
generator of the CTM for the integrable models. Thus,
(5) contains N(N − 1)/2 local bonds, corresponding to
the quadrant of the 6-vertex model. Here, we note that
KN is clearly an Hermite matrix.

B. recursion relation

In order to formulate the real-space renormalization
group for the corner Hamiltonian, we have to set up the
recursion relation for matrices having different dimension
sizes. For this purpose, we introduce some notations for
a 2N × 2N matrix X :

X∗
N = δ(s1, s

′
1)XN, (6)

1 2 3 NN-1....

N-1

....KN =

FIG. 1: Graphical representation of corner Hamiltonian KN.
White circles indicate spins and the lines connecting two spins
mean the local interaction hn,n+1. The horizontal lines are
“stacked” to become the corner Hamiltonian.

where the row index of XN is labeled s2 · · · sN+1 and thus
X∗

N has the index s1, s2 · · · sN+1. Similarly, we also use
X∗∗

N−1 = δ(s1, s′1)δ(s2, s
′
2)XN−1.

We then construct the recursion relation of the corner
Hamiltonians between N and N+1. As is illustrated in
Fig.2, we can decomposeKN+1 into three pieces and then
find

KN+1 = h1,2 +H∗
N +K∗

N. (7)

However, this relation contains both of H and K, which
is not convenient for capturing the eigenvalue structure
of the corner Hamiltonian directly. In order to eliminate
H∗

N in (7), we exploit a supplemental recursion relation
for H∗

N which is represented as

H∗
N = K∗

N −K∗∗
N−1. (8)

We can thus construct the recursion relation consisting
of the corner Hamiltonians

KN+1 = h1,2 + 2K∗
N −K∗∗

N−1. (9)

A key point on (9) is that we have derived the recursion
relation between the corner Hamiltonians for three sizes
(N+1,N,N−1) rather than for the two sizes (N+1,N) by
eliminating H∗

N. Here, it should be noted that such a
construction of the recursion relation is almost parallel
to the “logarithm” of Baxter’s recursion relation for the
CTMs[9].

1 2 N+1....

....

....

2 N+1=
+

2 N+1
+

1 2
K H

K

hN+1 1,2 N
*

N
*

FIG. 2: Graphical representation of recursion relation (7).

We next convert the bases of the matrices into the
representation diagonalizing KN:

KNUN = UNωN, (10)

cond-mat/0507195

- Hyperbolic “deformation” can be considered

J. Phys. Soc. Jpn. Full Paper Author Name 3

We call the deformation from H in Eq. (2.1) to Hcosh(λ)
introduced here as the hyperbolic deformation in the fol-
lowing.
Let us extend the shift operation S and its conjugate

S† to Hamiltonians of finite size systems. A natural way
is to consider that the operation modifies the coefficients
of the neighboring interactions as follows

cosh jλ → cosh(j − 1)λ . (3.2)

Then the shift operation on Hcosh(λ) is defined as

S Hcosh(λ)S† =
N
∑

j=−N

cosh(j − 1)λ hj,j+1 . (3.3)

Taking the weighted difference between Hcosh(λ) and
S Hcosh(λ)S† we obtain the relation

Hcosh(λ)−
1

coshλ
S Hcosh(λ)S† (3.4)

= tanhλ
N
∑

j=−N

sinh jλ hj,j+1 = tanhλHsinh(λ) ,

where Hsinh(λ) introduced here represents deformed
Hamiltonian of another type

Hsinh(λ) =
N
∑

j=−N

sinh jλ hj,j+1 , (3.5)

which is decoupled at the origin j = 0. Similar to
Eq. (3.4), the deformed Hamiltonian Hcosh(λ) can be
obtained from Hsinh(λ) by the following weighted differ-
ence

Hsinh(λ)−
1

coshλ
S Hsinh(λ)S† = tanhλHcosh(λ) .

(3.6)
The relations Eqs. (3.4) and (3.6) can be regarded as
one parameter deformation to the translational invari-
ance SHS† = H , which is satisfied by the uniform Hamil-
tonian in Eq. (2.1).
Following the convention in the infinite system DMRG

method, let us divide Hcosh(λ) into three parts

Hcosh(λ) = HL(λ) + h0,1 +HR(λ) , (3.7)

where HL(λ) and HR(λ) are defined as follows

HL(λ) =
−1
∑

j=−N

cosh jλ hj,j+1

HR(λ) =
N
∑

j=1

cosh jλ hj,j+1 . (3.8)

We also divide Hsinh(λ) in the same manner

Hsinh(λ) = CL(λ) + CR(λ) , (3.9)

where CL(λ) and CR(λ) are defined as follows

CL(λ) =
−1
∑

j=−N

sinh jλ hj,j+1

CR(λ) =
N
∑

j=1

sinh jλ hj,j+1 . (3.10)

These are deformations to the corner Hamiltonian,12, 13

since in the limit λ → 0 we obtain the relation

lim
λ→0

CR(λ)

sinhλ
=

N
∑

j=1

j hj,j+1 . (3.11)

We have shown the relation between Hcosh(λ) and
Hsinh(λ) for the same system size 2N +2. We then focus
on recursion relations, which connects systems of differ-
ent sizes. Let us introduce Baxter’s star notation12, 13

H∗
R(λ) =

N
∑

j=2

cosh(j − 1)λ hj,j+1

C∗
R(λ) =

N
∑

j=2

sinh(j − 1)λ hj,j+1 . (3.12)

We then obtain recursion relation

CR(λ) =
N
∑

j=1

sinh
[

(j − 1)λ+ λ
]

hj,j+1 (3.13)

= coshλ C∗
R(λ) + sinhλ

[

h1,2 +H∗
R(λ)

]

,

and similarly we obtain

HR(λ) =
N
∑

j=1

cosh
[

(j − 1)λ+ λ
]

hj,j+1 (3.14)

= coshλ
[

h1,2 +H∗
R(λ)

]

+ sinhλ C∗
R(λ) .

If we introduce the double star notations

H∗∗
R (λ) =

N
∑

j=3

cosh(j − 2)λ hj,j+1

C∗∗
R (λ) =

N
∑

j=3

sinh(j − 2)λ hj,j+1 , (3.15)

we can decouple the recursion relations as follows

HR(λ) = coshλ h1,2 − h2,3 + 2 coshλ H∗
R(λ) −H∗∗

R (λ)

CR(λ) = sinhλ h1,2 + 2 coshλ C∗
R(λ) − C∗∗

R (λ) . (3.16)

These relations would be of use when one applies nu-
merical renormalization group methods1, 2, 6, 13 to the de-
formed HamiltonianHcosh(λ) in order to obtain its eigen-
states.

4. Numerical Observations

One might conjecture that the hyperbolic deformation
violates uniform property of the system, since the bond
interaction strength is modified. But for the ground state
this intuition is not always true. For example, one can
show that the valence bond solid (VBS) state of S = 1
spin chains is not violated by the hyperbolic (or even
exponential) deformation. We observe another example,
the ground state of the deformed S = 1/2 Heisenberg
spin chain in this section.
Figure 1 shows the nearest neighbor spin correlation

function 〈sZj s
Z
j+1〉 calculated for the ground state of 400-

site system when λ = 0, 0.05, and 0.1. We keep m =
130 states at most for the block spin variables in the
calculation by the finite system DMRG method. When

a path to “spherical” deformation
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the case of a positive constant curvature, where the classical fields are on a sphere. The

corresponding Hamiltonian can be written as

HSph. =
N/2−1
∑

!=−N/2

cos(a!) h!,!+1 , (5)

where the parameter a is adjusted so that the deformation parameter A! = cos(a!)

decreases to zero at the system boundary. We call such a modification in the bond

strength as the spherical deformation due to a reason which we will explain in the

following. We analyze the ground state |Ψ0(a)〉 of this Hamiltonian and calculate the

finite size correction in the energy per site. It turns out that the correction is as small

as that calculated for the system with periodic boundary conditions.
Structure of this article is the following. In the next section we introduce a spinless

Fermion system and for tutorial purpose, the finite size effect is reviewed for chains with

open and periodic boundary conditions. In Sec. 3 we show our numerical results obtained

from the diagonalization of the spherically deformed Hamiltonian HSph. in Eq. (5). In

Sec. 4 we consider geometrical meaning of the spherical deformation using the Trotter

decomposition applied to the deformed Hamiltonian. We summarize the obtained results
in the last section and discuss dynamical properties of spherically deformed systems.

2. Energy corrections in the free fermion system

As an example of a one-dimensional quantum system, we consider the tight-binding

Hamiltonian

H = −t
∑

!

(

c†!c!+1 + c†!+1c!

)

+ µ
∑

!

c†!c! (6)

for the spinless Fermions where t and µ are, respectively, the hopping parameter and the

chemical potential. For simplicity we set µ = 0 and treat the half-filled state throughout

this article. Before this Hamiltonian is deformed, let us observe ground state properties

for finite size systems with open and periodic boundary conditions.

First we consider an N -site open boundary system whose Hamiltonian is given by

HN
O = −t

N−1
∑

!=1

(

c†!c!+1 + c†!+1c!

)

. (7)

The one-particle eigenstate is represented by the wave function

ψN
O;m(!) =

√

2

N + 1
sin

(

mπ!

N + 1

)

, (8)

where m is the integer within the range 1 ≤ m ≤ N . The one particle energy is

εNO;m = −2t cos

(

mπ

N + 1

)

. (9)

* History in physics suggests the generalization to trigonometric deformations

arXiv:0810.0622
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Figure 1. Bond strength of the spherically deformed open-boundary system of the
size N = 12.
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Figure 2. Expectation value 〈c†
!
c
!+1 + c†

!+1c!〉 of the spherically deformed lattice
Fermion model when N = 400. For comparison, we also plot the same expectation
value for the undeformed case.

3. Spherical deformation

Consider an N -site open boundary system described by the Hamiltonian

HN
S = −t

N/2−2
∑

!=−N/2

cos

(

!+ 1

N − 1
π

)

(

c†!c!+1 + c†!+1c!

)

. (18)

If compared with the undeformed Hamiltonian HN
O in Eq. (7), the strength of the

hopping term is scaled by the factor A! = cos[(! + 1)π/(N − 1)], which decreases

towards the system boundary. Figure 1 schematically shows such scale. For a reason
which we discuss in the next section, we call the deformation from HN

O to HN
S as the

spherical deformation. So far we have not obtained an analytic form of the one-particle

wave function ψN
S;m and the corresponding eigenvalue εNS;m. Thus, we calculate them

numerically by diagonalizing HN
S for the case where there is a particle in the system,

and obtain the ground state energy and expectation value 〈c†!c!+1+c†!+1c!〉 at half filling.

… well, the prototype was “cosine 
deformation”, and not squared. 
How can one use the 
deformation? (I don’t know.)
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FIG. 3. (Color online) (a) Spin correlation functions 〈Sα
j Sα

j ′ 〉
(α = x,z) in an XXZ chain for L = 80 and (",M) = (0.5,0) as
a function of the distance |j − j ′|, where sites (j,j ′) are selected
as j = L/2 − [r/2] and j ′ = L/2 + [(r + 1)/2]. Squares and circles
represent DMRG data for an open chain with SSD and a uniform open
chain, respectively, while lines show the analytic result for a uniform
periodic chain. (b) Schematic showing the relation between pairs
(j,j ′) in the open chain with SSD and those in the periodic chain.

change of the ground state. We thus conclude that the change
in slope of EE is not peculiar to a specific model but a general
outcome of the SSD when applied to a critical model.

Correlation functions. We next investigate two-spin corre-
lation functions. Here, we consider a spin-1/2 XXZ chain
in the critical regime, for which the asymptotic forms of the
correlation functions are known to be

〈
Sx

0 Sx
r

〉
= Ax

0
(−1)r

rη
− Ax

1
cos(Qr)
rη+1/η

+ · · · , (7)

〈
Sz

0S
z
r

〉
− M2 = − 1

4π2ηr2
+ Az

1
(−1)r cos(Qr)

r1/η
+ · · · , (8)

where Q = 2πM . The exponent η and the amplitudes Ax
0 , Ax

1 ,
and Az

1 were obtained as a function of " and M .11,15–17 Figure 3
shows DMRG results for ground-state correlation functions in
an XXZ chain, Eq. (2), with SSD. We also plot DMRG data
for a uniform open chain as well as the analytic result for a
uniform periodic chain; the latter is obtained by replacing r in
Eqs. (7) and (8) with L

π
sin( π |j−j ′|

L
). As shown in Fig. 3, the

results for the open chain with SSD agree almost completely
with those for the periodic chain.

Figure 4(a) shows the ground-state correlation function
〈Sj · Sj ′ 〉 in a small system calculated by exact diagonalization.
Data are plotted as a function of position j and “distance” r =
min(|j − j ′|,L − |j − j ′|) [see Fig. 4(b)]. We again observe
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FIG. 4. (Color online) (a) Spin correlation function (−1)r〈Sj ·
Sj ′ 〉, with j ′ = j + r (mod L), in an XXZ chain for L = 24 and
(",M) = (1.0,0) as a function of j and r . Symbols show data for an
open chain with SSD: crosses represent correlations between sites j

and j ′ = j + r (pairs “within” the chain), while squares represent
those between j and j ′ = j + r − L (pairs “across” the edges).
Lines show values of correlations in the uniform periodic chain.
(b) Schematic showing the two sites (j,j ′) at a “distance” r .

that the correlations in the open chain with SSD are in excellent
agreement with those in the uniform periodic chain; The
results are independent of position j , and more remarkably,
the correlations between sites j and j ′ = j + r − L, which
are located at the distance r across the open ends, have the
same value as those in the periodic chain.18 We have observed
the same phenomena as shown in Figs. 3 and 4 for several
parameter sets of (",M). The results indicate that correlation
functions, and presumably all observables, in the ground state
of systems with SSD become equal to those in uniform periodic
systems.

We note that for the two-leg ladder with zero magnetization,
M = 0, which has an energy gap above the singlet ground state,
the spin correlation decays exponentially even in systems with
SSD and no recovery of the correlation between edge spins
is observed. This suggests that the SSD does not work for
spin-gapped systems.

Wave functions. Finally, we discuss the overlap of ground-
state wave functions. Using the exact diagonalization method,
we calculated the ground-state wave function |vSSD〉 of an
XXZ chain, Eq. (2), with SSD for L ! 24 and several sets of
(",M), and compared it with the ground-state wave function
|vPBC〉 of the uniform periodic chain. We then found that the
overlap of those ground-state wave functions is very close to
unity; the deviation from unity is at most |1 − 〈vSSD|vPBC〉| "
10−3 and exactly 0 within the numerical accuracy of 10−14

for the XX case (" = 0). The result indicates that the ground
states |vSSD〉 and |vPBC〉 are equivalent at the level of the wave
function.18

We note that the equivalence of the ground-state wave
functions is not trivial even in the case of an XX chain [Eq. (2)
with " = 0]. Through the Jordan-Wigner transformation, the
XX chain is mapped onto the free fermion system and the
one-particle eigenstates of the periodic chain are simple plane
waves. In contrast, the Hamiltonian of an open chain with SSD
is not translationally invariant and its one-particle eigenstates
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最近接格子点間の「相関関数」を求めてみる。N=1000 サイトの系での 
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FIG. 3. (Color online) (a) Spin correlation functions 〈Sα
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(α = x,z) in an XXZ chain for L = 80 and (",M) = (0.5,0) as
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change of the ground state. We thus conclude that the change
in slope of EE is not peculiar to a specific model but a general
outcome of the SSD when applied to a critical model.

Correlation functions. We next investigate two-spin corre-
lation functions. Here, we consider a spin-1/2 XXZ chain
in the critical regime, for which the asymptotic forms of the
correlation functions are known to be

〈
Sx

0 Sx
r

〉
= Ax

0
(−1)r

rη
− Ax

1
cos(Qr)
rη+1/η

+ · · · , (7)

〈
Sz

0S
z
r

〉
− M2 = − 1

4π2ηr2
+ Az

1
(−1)r cos(Qr)

r1/η
+ · · · , (8)

where Q = 2πM . The exponent η and the amplitudes Ax
0 , Ax

1 ,
and Az

1 were obtained as a function of " and M .11,15–17 Figure 3
shows DMRG results for ground-state correlation functions in
an XXZ chain, Eq. (2), with SSD. We also plot DMRG data
for a uniform open chain as well as the analytic result for a
uniform periodic chain; the latter is obtained by replacing r in
Eqs. (7) and (8) with L

π
sin( π |j−j ′|
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). As shown in Fig. 3, the

results for the open chain with SSD agree almost completely
with those for the periodic chain.

Figure 4(a) shows the ground-state correlation function
〈Sj · Sj ′ 〉 in a small system calculated by exact diagonalization.
Data are plotted as a function of position j and “distance” r =
min(|j − j ′|,L − |j − j ′|) [see Fig. 4(b)]. We again observe
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that the correlations in the open chain with SSD are in excellent
agreement with those in the uniform periodic chain; The
results are independent of position j , and more remarkably,
the correlations between sites j and j ′ = j + r − L, which
are located at the distance r across the open ends, have the
same value as those in the periodic chain.18 We have observed
the same phenomena as shown in Figs. 3 and 4 for several
parameter sets of (",M). The results indicate that correlation
functions, and presumably all observables, in the ground state
of systems with SSD become equal to those in uniform periodic
systems.

We note that for the two-leg ladder with zero magnetization,
M = 0, which has an energy gap above the singlet ground state,
the spin correlation decays exponentially even in systems with
SSD and no recovery of the correlation between edge spins
is observed. This suggests that the SSD does not work for
spin-gapped systems.

Wave functions. Finally, we discuss the overlap of ground-
state wave functions. Using the exact diagonalization method,
we calculated the ground-state wave function |vSSD〉 of an
XXZ chain, Eq. (2), with SSD for L ! 24 and several sets of
(",M), and compared it with the ground-state wave function
|vPBC〉 of the uniform periodic chain. We then found that the
overlap of those ground-state wave functions is very close to
unity; the deviation from unity is at most |1 − 〈vSSD|vPBC〉| "
10−3 and exactly 0 within the numerical accuracy of 10−14

for the XX case (" = 0). The result indicates that the ground
states |vSSD〉 and |vPBC〉 are equivalent at the level of the wave
function.18

We note that the equivalence of the ground-state wave
functions is not trivial even in the case of an XX chain [Eq. (2)
with " = 0]. Through the Jordan-Wigner transformation, the
XX chain is mapped onto the free fermion system and the
one-particle eigenstates of the periodic chain are simple plane
waves. In contrast, the Hamiltonian of an open chain with SSD
is not translationally invariant and its one-particle eigenstates
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We introduce a new type of boundary conditions, smooth boundary conditions, for numerical studies
of quantum lattice systems. In a number of circumstances, these boundary conditions have substantially
smaller finite-size eAects than periodic or open boundary conditions. They can be applied to nearly any
short-ranged Hamiltonian system in any dimensionality and within almost any type of numerical ap-
proach.

PACS numbers: 02.70.—c, 05.30.Fk, 75.10.3m

In most numerical calculations for quantum systems,
periodic boundary conditions (PBC's) are the accepted
standard. There are a number of situations, however,
where PBC's are inadequate. In systems with some form
of incommensurate order, for example, very large system
sizes are needed to approximate the incommensurate be-
havior of the infinite system, and in mean-field methods,
where a number of iterations are required to achieve con-
vergence, the system can get stuck in a commensurate
state far from the desired incommensurate order. Anoth-
er example, which forms the primary motivation for this
work, stems from the density-matrix renormalization
group (RG) method [1]. This new real-space numerical
method has proven to be extremely accurate for Heisen-
berg spin chains [2], but for greatest accuracy require-
ments are that the chain not form a closed loop, as in
PBC's. This poses no great inconvenience for the 5=l
chain, where there is a finite correlation length, but is
quite inconvenient for half-integer spin chains (and most
1D fermion systems), where boundary effects decay as a
power law.
Recently, new types of boundary conditions, such as

self-determined boundary conditions [3] and nebula
boundary conditions [4], have been studied in conjunction
with quantum Monte Carlo simulations, but cannot be
generalized in an easy manner to any arbitrary system or
to other types of numerical techniques. In this paper we
introduce a new type of boundary conditions, smooth
boundary conditions (SBC's), which in the circumstances
listed above perform better than PBC's and open bound-
ary conditions (OBC's). The main idea of these new

boundary conditions is to smoothly "turn off" (set to
zero) the parameters of the Hamiltonian near the edges
of the system. Surprisingly, in many cases where PBC's
or OBC's perform very well, SBC's perform better. They
can be applied to numerical calculations for nearly any
system with local interactions in any number of dimen-
sions.
After introducing the ideas of SBC's, we will illustrate

their use in several systems. The ideas behind SBC's are
closely related to the summation of infinite series and the
Borel transform, and we will motivate their development
by first discussing accelerated convergence of numerical
series.
Let s„=P~-Oa~ be a slowly converging alternating

series, with s =lim„s„. For example, we can consider
the series

a =(—1) /in[in(m+3)] .

The summation of such a series can be viewed as a ter-
mination problem; if we stop with an odd number of
terms, we get a positive result, while stopping with an
even number gives a negative result. We would like to
find some way of terminating the series in a way that does
not bias between an odd and even number of terms. We
can do this by constructing a smoothing function, c, and
taking

Ms=pa c (2)
m=0

The smoothing function is conveniently described as a
continuous function y(x), 0~ x ~ 1, with y(0) =1 and
y(1) =0, samples at a discrete set of M points,
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c -y(m/M),
with 0 (m (M. An eA'ective choice for y(x) is

y(x) =—1 —tanh1 x —1/2
2 x(1—x) (4)

1.0

0.8

0.6

This approach is remarkably successful at summing a
wide variety of common, slowly converging, alternating
series, such as those for z, ln2, etc. , attaining results ac-
curate to 10 or 12 digits with 100 terms. Convergence is
roughly exponential with M. For the series in Eq. (1), we
obtain the result s =8.749551241(2) with M =100. The
same c 's are used for each series, and the total numeri-
cal work is extremely small. Note that all derivatives of y
are zero at 0 and 1; in fact, the function has essential
singularities at 0 and 1. These properties are crucial for
effective termination of a series; for example, if the func-
tion y(x) =(1—x ) is used, for which y"&0 at 0 and 1,
convergence is only quadratic in 1/M.
This procedure is closely related to the Borel transform

[5], which is usually applied to divergent series. The
Borel transform of the series s is defined as

0.4

0.0
10 20 30 40

FIG. I. The smoothing function, c, as a function of the lat-
tice site, m. The solid line corresponds to Eq. (4) in the text,
and the squares correspond to the smoothing function derived
from the Borel transform defined through Eq. (8).

We consider an L-site lattice with hopping matrix ele-
ment t;, centered at F. =0, with Fermi level eF, and Ham-
iltonian matrix

aa(x)= g x
m=o m!

From the definition of a(x) it follows trivially that

(5) Hij ~i ~j,i+1 ~j ~i,j +1 ~ (9)
Ordinarily t; (which gives the hopping between sites i and
i+ I) is a constant t. To apply SBC's we set

s = dxe "a(x) .&0
The standard use of the Borel transform is to calculate
a(x) and then perform the integration; however, here
we will not calculate a(x). We will only assume that
a(x)e "is negligible for x greater than a cutoff M'. We
take M' as the upper limit of the integral in Eq. (6), then
replace a(x) by its definition Eq. (5), and exchange the
sum and integral. We obtain

s=ga c (M'),
m=0

where

(7)

—M'
n=m+i

(8)

For m & M =2M', c (M') is completely negligible, and
the sum in Eq. (7) can be terminated, yielding Eq. (2).
In Fig. I we show both c as defined in Eq. (8) with
M'=20, and y(m/M) as defined in Eq. (4) with M =40.
The Borel approach and the approach using Eq. (4) are
roughly equally eA'ective at summing common series.
However, the Borel form is slightly less convenient, since
one must chose both M and M'.
This approach to numerical series is largely pedagogi-

cal; there are probably even more efticient ways to sum
such series. To apply these ideas to reduce finite-size
effects in a general Hamiltonian system, we consider first
a trivial example, a one-dimensional tight-binding chain.

cM—;, 1~I ~M,
t/t= I, M(i ~L—M,

c;—L+M L—M &i &L.
(10)

Hl ~J ~l ~J, l + I ~J ~i,J + 1 +~i,j ~F ~l—i+~i
2E

Note that Eq. (11) explicitly depends on eF, whereas Eq.
(9) does not. This Hamiltonian reproduces the properties
of the infinite system extremely well, even on a relatively
small lattice.
If OBC's are used on this system, edge effects produce

slowly decaying Friedel-type oscillations in local proper-
ties, such as the density. PBC's work much better, but
still, the typical energy level spacing decays only as I/L
SBC's concentrate more states at eF than elsewhere. The
advantages of this are apparent in Fig. 2, where we plot

Here c; is the smoothing function defined by Eq. (4) or
Eq. (8).
We also need to adjust the diagonal elements of H. A

general rule for applying SBC's is that in the limit that
the width of the smoothing region M ~, the local
properties of the system should be constant with I.. In this
case the Fermi level t.'F is constant across the system, so
that, as we vary the local bandwidth, we must shift the
band center so that eF strikes the band in the same rela-
tive position. Thus, Eq. (9) becomes
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FIG. 2. The average kinetic energy, (K), as a function of the
chemical potential, p, for the noninteracting one-dimensional
tight-binding chain with L =30 sites. For SBC s the smoothing
occurs on the leftmost and rightmost 10 sites.

+g U ni 1 ni l g'pint, ~, (12)

which consists of a system of electrons with an on-site
interaction with coupling constant U;. Here t; is the
nearest-neighbor hopping parameter between sites i and
i+1, and p; is the chemical potential. The c;~ are fer-
mion creation operators at site i with spin a, and
n; =c;t c; . Here t;/t is scaled according to the left-
hand side of Eq. (10) when we use SBC's and U;/U
=p;/p =(1/2t)(t; i+t;), where t, U, and p are the bulk
values.
Applying the Hartree-Fock approximation, we rewrite

the density operators as

n; =(n; )+Bn; =(n; )+(n; —(n; )) . (13)
We then insert Eq. (13) in the Hamiltonian of Eq. (12),
ignore terms quadratic in the density Auctuations, 6n;
and obtain the efTective Hartree-Fock Hamiltonian

H H F g ti (ci, crci + 1,o + ci~+ 1,~i, cr )

the average kinetic energy per site, (K), as a function of
the chemical potential, p = eF. The choice of PBC's
shows the presence of discontinuous jumps, typical of a
finite-size system. On the other hand, the use of SBC's
eliminates the discontinuities in (K) already on a system
as small as L =30 sites, and agrees extremely well with
the infinite system results. The Friedel-like edge eAects
are also absent (not shown).
We next consider incommensurate spin-density-wave

order in the positive-U 1D Hubbard Hamiltonian [6]
within a mean-field approximation. The Hubbard Ham-
iltonian is

H

gati

(ci,oct+i a+ci+I +cia),

FIG. 3. The incommensurate spin-density-wave vector, q, on
a Hubbard chain as a function of the chemical potential, p.
The chain has L =30 sites, the on-site repulsion is U/t =2.0,
and for the SBC's the smoothing occurs on the leftmost and
rightmost l0 sites. Here q is rescaled by L/rr in order to show
that with PBC's the spin density wave is commensurate with the
lattice.

where we have dropped all constant terms. This Hamil-
tonian can be easily diagonalized, and solutions can be
found self-consistently by iteration. Previous studies us-
ing PBC's and OBC's have shown that the Hamiltonian
in Eq. (14) has both spin and charge incommensurate
density waves [7,8]. Here we will show that the incom-
mensurate wavelength for the bulk can be already deter-
mined to high accuracy on a small lattice using SBC's
but not with standard boundary conditions.
In Fig. 3 we show the incommensurate spin-density-

wave vector q as a function of the chemical potential,
p=eF, on a lattice with L =30 sites. We find that when
applying PBC's to the system, q takes only commensu-
rate, discrete values. On the other hand, when consider-
ing SBC's with all energy scales (t;/t and U;/U) decreas-
ing on the rightmost and leftmost 10 sites according to
the smooth function defined in Eq. (10), we see that q in-
creases smoothly with p in agreement with the infinite
lattice results, which were derived from solving the sys-
tem on larger lattices (L =120,180 sites) with OBC's and
SBC's and finding no changes in the results upon increas-
ing L or changing types of boundary conditions. It is
clear from Fig. 3 that, even on a small lattice (L =30),
SBC's give results that are in good agreement with the
results in the bulk.
To show that the application of SBC's is not only

efTective for noninteracting systems or within mean-field
theories, we studied the Heisenberg chain using the
density-matrix RG approach [1,2]. Here, we consider an
antiferromagnetic S= 2 Heisenberg chain described by
the Hamiltonian

+g (U;(n; ) p;)n;— (14)
L

H= g I S"S.+i (1S)
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推測できることが多い。 
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* Corner Hamiltonian ~ Entanglement Hamiltonian
- Okunishi proposed a quantum counterpart of CTMRG

arXiv:0810.0622

2

the eigenvalue spectrum of the corner Hamiltonian can
be scaled by one parameter to the corresponding spec-
trum(logarithm) of the reduced density matrix. More-
over, we analyze the “spectral flow” of the corner Hamil-
tonian for the S = 1 bilinear-biquadratic chain. In §5, we
summarize our results and discuss further implications of
the eigenvalue spectrum of the corner Hamiltonian.

II. FORMULATION

A. definitions

In this section we consider the S = 1/2 XXZ spin chain
for convenience. However, the arguments in the following
can be generalized straightforwardly to the general 1D
quantum systems. We write the local Hamiltonian of the
XXZ spin chain as

hn,n+1 = Sx
nS

x
n+1 + Sy

nS
y
n+1 +∆Sz

nS
z
n+1, (3)

where !S is the S = 1/2 spin(not Pauli) matrix. The
matrix element of (3) is labeled by the spin indices sn,
sn+1 and s′n, s

′
n+1. However, we do not show explicitly

such spin indices without necessity.
Let us denote the Hamiltonian of N spins as

HN =
N−1∑

n=1

hn,n+1, (4)

for which the free boundary condition is basically as-
sumed. In the context of the DMRG, HN is the right-
half(or left-half) block of the total Hamiltonian and, in
this labeling of the site index, n = 1(N) is assigned to
the center(edge) of half of the system.
We further define the corner Hamiltonian as

KN =
N−1∑

n=1

nhn,n+1, (5)

whose graphical representation is depicted in Fig. 1. As
noted in the introduction, the corner Hamiltonian is the
generator of the CTM for the integrable models. Thus,
(5) contains N(N − 1)/2 local bonds, corresponding to
the quadrant of the 6-vertex model. Here, we note that
KN is clearly an Hermite matrix.

B. recursion relation

In order to formulate the real-space renormalization
group for the corner Hamiltonian, we have to set up the
recursion relation for matrices having different dimension
sizes. For this purpose, we introduce some notations for
a 2N × 2N matrix X :

X∗
N = δ(s1, s

′
1)XN, (6)

1 2 3 NN-1....

N-1

....KN =

FIG. 1: Graphical representation of corner Hamiltonian KN.
White circles indicate spins and the lines connecting two spins
mean the local interaction hn,n+1. The horizontal lines are
“stacked” to become the corner Hamiltonian.

where the row index of XN is labeled s2 · · · sN+1 and thus
X∗

N has the index s1, s2 · · · sN+1. Similarly, we also use
X∗∗

N−1 = δ(s1, s′1)δ(s2, s
′
2)XN−1.

We then construct the recursion relation of the corner
Hamiltonians between N and N+1. As is illustrated in
Fig.2, we can decomposeKN+1 into three pieces and then
find

KN+1 = h1,2 +H∗
N +K∗

N. (7)

However, this relation contains both of H and K, which
is not convenient for capturing the eigenvalue structure
of the corner Hamiltonian directly. In order to eliminate
H∗

N in (7), we exploit a supplemental recursion relation
for H∗

N which is represented as

H∗
N = K∗

N −K∗∗
N−1. (8)

We can thus construct the recursion relation consisting
of the corner Hamiltonians

KN+1 = h1,2 + 2K∗
N −K∗∗

N−1. (9)

A key point on (9) is that we have derived the recursion
relation between the corner Hamiltonians for three sizes
(N+1,N,N−1) rather than for the two sizes (N+1,N) by
eliminating H∗

N. Here, it should be noted that such a
construction of the recursion relation is almost parallel
to the “logarithm” of Baxter’s recursion relation for the
CTMs[9].

1 2 N+1....

....

....

2 N+1=
+

2 N+1
+

1 2
K H

K

hN+1 1,2 N
*

N
*

FIG. 2: Graphical representation of recursion relation (7).

We next convert the bases of the matrices into the
representation diagonalizing KN:

KNUN = UNωN, (10)

cond-mat/0507195

- Hyperbolic “deformation” can be considered

J. Phys. Soc. Jpn. Full Paper Author Name 3

We call the deformation from H in Eq. (2.1) to Hcosh(λ)
introduced here as the hyperbolic deformation in the fol-
lowing.
Let us extend the shift operation S and its conjugate

S† to Hamiltonians of finite size systems. A natural way
is to consider that the operation modifies the coefficients
of the neighboring interactions as follows

cosh jλ → cosh(j − 1)λ . (3.2)

Then the shift operation on Hcosh(λ) is defined as

S Hcosh(λ)S† =
N
∑

j=−N

cosh(j − 1)λ hj,j+1 . (3.3)

Taking the weighted difference between Hcosh(λ) and
S Hcosh(λ)S† we obtain the relation

Hcosh(λ)−
1

coshλ
S Hcosh(λ)S† (3.4)

= tanhλ
N
∑

j=−N

sinh jλ hj,j+1 = tanhλHsinh(λ) ,

where Hsinh(λ) introduced here represents deformed
Hamiltonian of another type

Hsinh(λ) =
N
∑

j=−N

sinh jλ hj,j+1 , (3.5)

which is decoupled at the origin j = 0. Similar to
Eq. (3.4), the deformed Hamiltonian Hcosh(λ) can be
obtained from Hsinh(λ) by the following weighted differ-
ence

Hsinh(λ)−
1

coshλ
S Hsinh(λ)S† = tanhλHcosh(λ) .

(3.6)
The relations Eqs. (3.4) and (3.6) can be regarded as
one parameter deformation to the translational invari-
ance SHS† = H , which is satisfied by the uniform Hamil-
tonian in Eq. (2.1).
Following the convention in the infinite system DMRG

method, let us divide Hcosh(λ) into three parts

Hcosh(λ) = HL(λ) + h0,1 +HR(λ) , (3.7)

where HL(λ) and HR(λ) are defined as follows

HL(λ) =
−1
∑

j=−N

cosh jλ hj,j+1

HR(λ) =
N
∑

j=1

cosh jλ hj,j+1 . (3.8)

We also divide Hsinh(λ) in the same manner

Hsinh(λ) = CL(λ) + CR(λ) , (3.9)

where CL(λ) and CR(λ) are defined as follows

CL(λ) =
−1
∑

j=−N

sinh jλ hj,j+1

CR(λ) =
N
∑

j=1

sinh jλ hj,j+1 . (3.10)

These are deformations to the corner Hamiltonian,12, 13

since in the limit λ → 0 we obtain the relation

lim
λ→0

CR(λ)

sinhλ
=

N
∑

j=1

j hj,j+1 . (3.11)

We have shown the relation between Hcosh(λ) and
Hsinh(λ) for the same system size 2N +2. We then focus
on recursion relations, which connects systems of differ-
ent sizes. Let us introduce Baxter’s star notation12, 13

H∗
R(λ) =

N
∑

j=2

cosh(j − 1)λ hj,j+1

C∗
R(λ) =

N
∑

j=2

sinh(j − 1)λ hj,j+1 . (3.12)

We then obtain recursion relation

CR(λ) =
N
∑

j=1

sinh
[

(j − 1)λ+ λ
]

hj,j+1 (3.13)

= coshλ C∗
R(λ) + sinhλ

[

h1,2 +H∗
R(λ)

]

,

and similarly we obtain

HR(λ) =
N
∑

j=1

cosh
[

(j − 1)λ+ λ
]

hj,j+1 (3.14)

= coshλ
[

h1,2 +H∗
R(λ)

]

+ sinhλ C∗
R(λ) .

If we introduce the double star notations

H∗∗
R (λ) =

N
∑

j=3

cosh(j − 2)λ hj,j+1

C∗∗
R (λ) =

N
∑

j=3

sinh(j − 2)λ hj,j+1 , (3.15)

we can decouple the recursion relations as follows

HR(λ) = coshλ h1,2 − h2,3 + 2 coshλ H∗
R(λ) −H∗∗

R (λ)

CR(λ) = sinhλ h1,2 + 2 coshλ C∗
R(λ) − C∗∗

R (λ) . (3.16)

These relations would be of use when one applies nu-
merical renormalization group methods1, 2, 6, 13 to the de-
formed HamiltonianHcosh(λ) in order to obtain its eigen-
states.

4. Numerical Observations

One might conjecture that the hyperbolic deformation
violates uniform property of the system, since the bond
interaction strength is modified. But for the ground state
this intuition is not always true. For example, one can
show that the valence bond solid (VBS) state of S = 1
spin chains is not violated by the hyperbolic (or even
exponential) deformation. We observe another example,
the ground state of the deformed S = 1/2 Heisenberg
spin chain in this section.
Figure 1 shows the nearest neighbor spin correlation

function 〈sZj s
Z
j+1〉 calculated for the ground state of 400-

site system when λ = 0, 0.05, and 0.1. We keep m =
130 states at most for the block spin variables in the
calculation by the finite system DMRG method. When

a path to “spherical” deformation

arXiv:0808.3858Spherical deformation 3

the case of a positive constant curvature, where the classical fields are on a sphere. The

corresponding Hamiltonian can be written as

HSph. =
N/2−1
∑

!=−N/2

cos(a!) h!,!+1 , (5)

where the parameter a is adjusted so that the deformation parameter A! = cos(a!)

decreases to zero at the system boundary. We call such a modification in the bond

strength as the spherical deformation due to a reason which we will explain in the

following. We analyze the ground state |Ψ0(a)〉 of this Hamiltonian and calculate the

finite size correction in the energy per site. It turns out that the correction is as small

as that calculated for the system with periodic boundary conditions.
Structure of this article is the following. In the next section we introduce a spinless

Fermion system and for tutorial purpose, the finite size effect is reviewed for chains with

open and periodic boundary conditions. In Sec. 3 we show our numerical results obtained

from the diagonalization of the spherically deformed Hamiltonian HSph. in Eq. (5). In

Sec. 4 we consider geometrical meaning of the spherical deformation using the Trotter

decomposition applied to the deformed Hamiltonian. We summarize the obtained results
in the last section and discuss dynamical properties of spherically deformed systems.

2. Energy corrections in the free fermion system

As an example of a one-dimensional quantum system, we consider the tight-binding

Hamiltonian

H = −t
∑

!

(

c†!c!+1 + c†!+1c!

)

+ µ
∑

!

c†!c! (6)

for the spinless Fermions where t and µ are, respectively, the hopping parameter and the

chemical potential. For simplicity we set µ = 0 and treat the half-filled state throughout

this article. Before this Hamiltonian is deformed, let us observe ground state properties

for finite size systems with open and periodic boundary conditions.

First we consider an N -site open boundary system whose Hamiltonian is given by

HN
O = −t

N−1
∑

!=1

(

c†!c!+1 + c†!+1c!

)

. (7)

The one-particle eigenstate is represented by the wave function

ψN
O;m(!) =

√

2

N + 1
sin

(

mπ!

N + 1

)

, (8)

where m is the integer within the range 1 ≤ m ≤ N . The one particle energy is

εNO;m = −2t cos

(

mπ

N + 1

)

. (9)

* History in physics suggests the generalization to trigonometric deformations

arXiv:0810.0622
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Figure 1. Bond strength of the spherically deformed open-boundary system of the
size N = 12.
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Figure 2. Expectation value 〈c†
!
c
!+1 + c†

!+1c!〉 of the spherically deformed lattice
Fermion model when N = 400. For comparison, we also plot the same expectation
value for the undeformed case.

3. Spherical deformation

Consider an N -site open boundary system described by the Hamiltonian

HN
S = −t

N/2−2
∑

!=−N/2

cos

(

!+ 1

N − 1
π

)

(

c†!c!+1 + c†!+1c!

)

. (18)

If compared with the undeformed Hamiltonian HN
O in Eq. (7), the strength of the

hopping term is scaled by the factor A! = cos[(! + 1)π/(N − 1)], which decreases

towards the system boundary. Figure 1 schematically shows such scale. For a reason
which we discuss in the next section, we call the deformation from HN

O to HN
S as the

spherical deformation. So far we have not obtained an analytic form of the one-particle

wave function ψN
S;m and the corresponding eigenvalue εNS;m. Thus, we calculate them

numerically by diagonalizing HN
S for the case where there is a particle in the system,

and obtain the ground state energy and expectation value 〈c†!c!+1+c†!+1c!〉 at half filling.

… well, the prototype was “cosine 
deformation”, and not squared. 
How can one use the 
deformation? (I don’t know.)
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Figure 1. Bond strength of the spherically deformed open-boundary system of the
size N = 12.
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Figure 2. Expectation value 〈c†
!
c
!+1 + c†

!+1c!〉 of the spherically deformed lattice
Fermion model when N = 400. For comparison, we also plot the same expectation
value for the undeformed case.

3. Spherical deformation

Consider an N -site open boundary system described by the Hamiltonian

HN
S = −t

N/2−2
∑

!=−N/2

cos

(

!+ 1

N − 1
π

)

(

c†!c!+1 + c†!+1c!

)

. (18)

If compared with the undeformed Hamiltonian HN
O in Eq. (7), the strength of the

hopping term is scaled by the factor A! = cos[(! + 1)π/(N − 1)], which decreases

towards the system boundary. Figure 1 schematically shows such scale. For a reason
which we discuss in the next section, we call the deformation from HN

O to HN
S as the

spherical deformation. So far we have not obtained an analytic form of the one-particle

wave function ψN
S;m and the corresponding eigenvalue εNS;m. Thus, we calculate them

numerically by diagonalizing HN
S for the case where there is a particle in the system,

and obtain the ground state energy and expectation value 〈c†!c!+1+c†!+1c!〉 at half filling.

[v1]

393

Errata

Spherical Deformation for one-dimensional Quantum Systems

Andrej Gendiar, Roman Krcmar, and Tomotoshi Nishino
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In the article we have published, we studied the finite-size correction to the energy per site
EN/N for the spherically deformed free fermion lattice, whose Hamiltonian is given by

Ĥ(n)
S =

N−1
X

!=1

»

sin
!π
N

–n
 

−t ĉ†
!
ĉ!+1 − t ĉ†

!+1ĉ! − µ
ĉ†

!
ĉ! + ĉ†

!+1ĉ!+1

2

!

(1)

for the case n = 1. While we proceeded to a further study on the spherical deformation, we noticed
the data shown in Figs. 2-7 were incorrect, and these figures corresponded to the Hamiltonian for the
case n = 2. This error happened due to a very primitive confusion in the file name of computational
source codes, and we misused the data with n = 2, instead of n = 1. We show appropriate data for
the typical case µ = 0, which corresponds to the half filling.
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Fig. 1. Bond correlations at half filling calculated

for Ĥ
(n)
S with n = 0, 1, and 2.
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Fig. 2. Finite-size corrections to the energy.

To correct the former Fig. 2, we draw Fig. 1 which shows bond correlation function 〈ĉ†
!
ĉ!+1 +

ĉ†
!+1ĉ!〉 calculated for ĤO = Ĥ(0)

S , Ĥ(1)
S , and Ĥ(2)

S . Compared with the correlation obtained by

ĤO, one finds that Ĥ(1)
S exhibits a weaker position dependence. Small fluctuations are, however,

present near the system boundary in contrast to the negligible dependence for Ĥ(2)
S . These position

0 5 10 15
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0.26
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0.28

<
c l+
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l >

N = 1000,   sin1(π l / N)
N = 3000,   sin1(π l / N)
N = 1000,   sin2(π l / N)
N = 3000,   sin2(π l / N)

985 990 995 1000
l - N + 1000

n = 1/4

Fig. 3. Occupation 〈c†
!
c
!
〉 at quarter filling.

dependencies are related to the finite-size correc-
tions to the ground-state energy, as shown in Fig. 2,
which correspond to the former Fig. 4. For Ĥ(1)

S the
corrections are proportional to 1/N log N , in con-
trast to the 1/N2-dependence for Ĥ(2)

S . Figure 3
corresponds to the former Fig. 6, where the occu-
pation 〈ĉ†

!
ĉ!〉 is plotted with respect to !. For Ĥ(1)

S

there is a density fluctuation near the system bound-
ary, while it is almost absent for Ĥ(2)

S . In conclu-
sion, the boundary effects are reduced by way of
the spherical deformation from Ĥ(0)

S to Ĥ(1)
S , but

the reduction effect is still insufficient in the sense
that the ground-state energy contains the logarith-
mic correction shown in Fig. 2.
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… finally we reach sin^2 form, … almost ACCIDENTALLY



What happened?
- I visited Aachen, to discuss with Andrej Gendiar in 2008.

… we considered a way of reducing the boundary effect in 1D chain.

The following picture came up, though I do not 
understand what it is even now. (open problem)
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with OBCs, where the leading order of the finite-size correction
is proportional to N−1. The correction of the same order also
exists for the energy per bond. With PBCs, one finds

E
(N)
0

N
= −2t

π
+ 2π t

3N2
+ O

(
1

N3

)
, (4)

where the leading correction is of the order of N−2. The
difference between Eqs. (3) and (4) chiefly comes from the
presence of the boundary energy which exists only when OBCs
are imposed.

The sinusoidal deformation introduces a position-
dependent energy scale gj = [sin(jπ/N )]m to each bond of
the system with OBCs, where m is the positive integer [13,14].
Deforming H(N) in Eq. (1), we obtain the corresponding
free-fermionic Hamiltonian

H(N)
sine = −t

N−1∑

j=1

[
sin

(
jπ

N

)]m

(c†j cj+1 + c
†
j+1cj ). (5)

We have not obtained an analytical solution for the one-particle
spectrum of H(N)

sine so far, except for the zero-energy state. Thus
we perform numerical analyses in the following investigations
on the ground state.

Since we are interested in the ground-state energy per site
(or per bond), we introduce the normalization factor

B(N) =
N−1∑

j=1

[
sin

(
jπ

N

)]m

=
N−1∑

j=1

gj , (6)

which is the sum of the deformation factors over the entire
system. When m is an odd positive integer, we have

B(N) =
(m−1)/2∑

"=0

(−1)"

(2")m−1

(
m
"

)
cot

[
(m − 2")π

2N

]
, (7)

and when m is an even positive integer, we have

B(N) = N

2m

(
m

m/2

)
. (8)

We represent the ground-state energy of H(N)
sine at half filling by

the notation E
(N)
0 . It is expected that the normalized energy

e
(N)
0 = E

(N)
0

B(N)
(9)

converges to −2t/π in the large N limit in analogy to Eqs. (3)
and (4). We refer to e

(N)
0 in Eq. (9) as the energy per bond

in the following. As a convention, we set B(N) = N − 1 for
the system with OBCs, and B(N) = N with PBCs, where these
values just represent the number of bonds. Using this extended
definition of B(N), we can represent the energy per bond by
Eq. (9) regardless of the boundary condition or the presence
of deformation.
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FIG. 1. (Color online) Convergence of e
(N)
0 in Eq. (9) with respect

to N at half filling. We choose t as the unit of the energy. Data with
OBCs, PBCs, and the deformed cases with m = 1–5 are shown.

We regard t as the unit of the energy in the numerical
analyses. Figure 1 shows the N dependence of e

(N)
0 in Eq. (9)

for the undeformed systems with OBCs, PBCs, and the
deformed systems from m = 1 to 5. When the PBCs are
imposed, the convergence of e

(N)
0 with respect to N−2 is linear,

and there is an even-odd oscillation with respect to the particle
number N/2. Similarly, the linear N−2 dependence is observed
when m ! 2 under the sinusoidal deformation. In the case
m = 1, there is an additional logarithmic correction, as will be
shown later. It should be noted that when the particle number
N/2 is odd, e

(N)
0 obtained with the sinusoidal deformation

for m = 2 coincides with e
(N)
0 obtained with PBCs [17]. This

complete agreement is checked down to the smallest digit in
numerical precision. Throughout this paper we use the exact
diagonalization in order to reduce any numerical errors to
minimum.

In order to confirm the N−2 dependence of e
(N)
0 with the

sinusoidal deformation under m ! 2, we plot the difference
between e

(N)
0 obtained with PBCs (when N/2 is even) and e

(N)
0

with the sinusoidal deformation. To avoid any confusion, let
E

(N)
PBC and E(N)

sine denote the ground-state energy obtained with
PBCs and with the sinusoidal deformation, respectively. We
also use similar notation for the normalization factors B

(N)
PBC =

N and B(N)
sine for the normalization factor defined in Eq. (6).

Figure 2 depicts the magnified difference

N2[e(N)
PBC − e(N)

sine

]
≡ N2

[
E

(N)
PBC

B
(N)
PBC

− E(N)
sine

B
(N)
sine

]

(10)

when N is even. It is shown that the logarithmic cor-
rection N−2 log N is present when m = 1, and is absent
when m ! 2.

Figure 3 shows the spatial distribution of the bond correla-
tion function 〈c†j cj+1 + c

†
j+1cj 〉 at half filling when N = 1000.

The Friedel oscillations induced by the boundary are clearly
observed when OBCs are imposed (the asterisks), and weaker
oscillations are observed with the sinusoidal deformation when
m = 1. Only when m = 2, there are no oscillations at all; we

052118-2

a sphere has no border

let us focus on the width of 
each piece of paper.

Major contribution 
came from  
Andrej Gendiar



What happened?
- I visited Aachen, to discuss with Andrej Gendiar in 2008.

… we considered a way of reducing the boundary effect in 1D chain.

The following picture came up, though I do not 
understand what it is even now. (open problem)

any way, we checked the “cosine deformation” on 
the free fermion lattice, and confirmed that it 
reduces the boundary effect.

Spherical deformation 3

the case of a positive constant curvature, where the classical fields are on a sphere. The

corresponding Hamiltonian can be written as

HSph. =
N/2−1
∑

!=−N/2

cos(a!) h!,!+1 , (5)

where the parameter a is adjusted so that the deformation parameter A! = cos(a!)

decreases to zero at the system boundary. We call such a modification in the bond

strength as the spherical deformation due to a reason which we will explain in the

following. We analyze the ground state |Ψ0(a)〉 of this Hamiltonian and calculate the

finite size correction in the energy per site. It turns out that the correction is as small

as that calculated for the system with periodic boundary conditions.
Structure of this article is the following. In the next section we introduce a spinless

Fermion system and for tutorial purpose, the finite size effect is reviewed for chains with

open and periodic boundary conditions. In Sec. 3 we show our numerical results obtained

from the diagonalization of the spherically deformed Hamiltonian HSph. in Eq. (5). In

Sec. 4 we consider geometrical meaning of the spherical deformation using the Trotter

decomposition applied to the deformed Hamiltonian. We summarize the obtained results
in the last section and discuss dynamical properties of spherically deformed systems.

2. Energy corrections in the free fermion system

As an example of a one-dimensional quantum system, we consider the tight-binding

Hamiltonian

H = −t
∑

!

(

c†!c!+1 + c†!+1c!

)

+ µ
∑

!

c†!c! (6)

for the spinless Fermions where t and µ are, respectively, the hopping parameter and the

chemical potential. For simplicity we set µ = 0 and treat the half-filled state throughout

this article. Before this Hamiltonian is deformed, let us observe ground state properties

for finite size systems with open and periodic boundary conditions.

First we consider an N -site open boundary system whose Hamiltonian is given by

HN
O = −t

N−1
∑

!=1

(

c†!c!+1 + c†!+1c!

)

. (7)

The one-particle eigenstate is represented by the wave function

ψN
O;m(!) =

√

2

N + 1
sin

(

mπ!

N + 1

)

, (8)

where m is the integer within the range 1 ≤ m ≤ N . The one particle energy is

εNO;m = −2t cos

(

mπ

N + 1

)

. (9)

We report the result as [v1] of arXiv:0810.0622

ATTENTION: we submit [v1] to Prog. Theor. Phys. 
Referee pointed that the boundary effect is reduced, but still there is. 

- Andrej proposed to consider cos^n also, since the function falls to 0 
MORE SMOOTHLY than cos^1. 

- I denied Andrej’s proposal, since cos^n contradict the above SPHERE.
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Figure 1. Bond strength of the spherically deformed open-boundary system of the
size N = 12.

0 50 100 150 200 250 300 350 400
j

0.626

0.628

0.630

0.632

0.634

0.636

0.638

0.640

0.642

0.644
<

c i+
 c

i+
1 +

 c
i+

1
+

 c
i >

-t
-t cos (π j / 399)

Figure 2. Expectation value 〈c†
!
c
!+1 + c†

!+1c!〉 of the spherically deformed lattice
Fermion model when N = 400. For comparison, we also plot the same expectation
value for the undeformed case.

3. Spherical deformation

Consider an N -site open boundary system described by the Hamiltonian

HN
S = −t

N/2−2
∑

!=−N/2

cos

(

!+ 1

N − 1
π

)

(

c†!c!+1 + c†!+1c!

)

. (18)

If compared with the undeformed Hamiltonian HN
O in Eq. (7), the strength of the

hopping term is scaled by the factor A! = cos[(! + 1)π/(N − 1)], which decreases

towards the system boundary. Figure 1 schematically shows such scale. For a reason
which we discuss in the next section, we call the deformation from HN

O to HN
S as the

spherical deformation. So far we have not obtained an analytic form of the one-particle

wave function ψN
S;m and the corresponding eigenvalue εNS;m. Thus, we calculate them

numerically by diagonalizing HN
S for the case where there is a particle in the system,

and obtain the ground state energy and expectation value 〈c†!c!+1+c†!+1c!〉 at half filling.

What happened?
- I visited Aachen, to discuss with Andrej Gendiar in 2008.

… we considered a way of reducing the boundary effect in 1D chain.

The following picture came up, though I do not 
understand what it is even now. (open problem)



What happened? - Andrej was right, and there is one another side story.
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In the article we have published, we studied the finite-size correction to the energy per site
EN/N for the spherically deformed free fermion lattice, whose Hamiltonian is given by

Ĥ(n)
S =

N−1
X

!=1

»

sin
!π
N

–n
 

−t ĉ†
!
ĉ!+1 − t ĉ†

!+1ĉ! − µ
ĉ†

!
ĉ! + ĉ†

!+1ĉ!+1

2

!

(1)

for the case n = 1. While we proceeded to a further study on the spherical deformation, we noticed
the data shown in Figs. 2-7 were incorrect, and these figures corresponded to the Hamiltonian for the
case n = 2. This error happened due to a very primitive confusion in the file name of computational
source codes, and we misused the data with n = 2, instead of n = 1. We show appropriate data for
the typical case µ = 0, which corresponds to the half filling.
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Fig. 1. Bond correlations at half filling calculated

for Ĥ
(n)
S with n = 0, 1, and 2.
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Fig. 2. Finite-size corrections to the energy.

To correct the former Fig. 2, we draw Fig. 1 which shows bond correlation function 〈ĉ†
!
ĉ!+1 +

ĉ†
!+1ĉ!〉 calculated for ĤO = Ĥ(0)

S , Ĥ(1)
S , and Ĥ(2)

S . Compared with the correlation obtained by

ĤO, one finds that Ĥ(1)
S exhibits a weaker position dependence. Small fluctuations are, however,

present near the system boundary in contrast to the negligible dependence for Ĥ(2)
S . These position

0 5 10 15
l
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N = 3000,   sin2(π l / N)
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l - N + 1000
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Fig. 3. Occupation 〈c†
!
c
!
〉 at quarter filling.

dependencies are related to the finite-size correc-
tions to the ground-state energy, as shown in Fig. 2,
which correspond to the former Fig. 4. For Ĥ(1)

S the
corrections are proportional to 1/N log N , in con-
trast to the 1/N2-dependence for Ĥ(2)

S . Figure 3
corresponds to the former Fig. 6, where the occu-
pation 〈ĉ†

!
ĉ!〉 is plotted with respect to !. For Ĥ(1)

S

there is a density fluctuation near the system bound-
ary, while it is almost absent for Ĥ(2)

S . In conclu-
sion, the boundary effects are reduced by way of
the spherical deformation from Ĥ(0)

S to Ĥ(1)
S , but

the reduction effect is still insufficient in the sense
that the ground-state energy contains the logarith-
mic correction shown in Fig. 2.
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Extension to higher dimensional system
- It is always possible to consider Hyperbolic lattice or deformation.

- Slowest modulation on N-dimensional sphere would be an extension of SSD.

- What is the right Trotter decomposition between curved surface with 
constant curvature and corresponding quantum (lattice) system.

Trotter decomposition

Home Works (Conjectures)

Fuzzy space

- How does non commutable space can be deformed in the manner of SSD?



electric magnet: should it be a cylinder?

arXiv:1907.03539

Figure 1: Cutaway drawings of the spherical coil in a spherical shield (top) and the solenoidal

coil (middle) and spherical coil (bottom) in cylindrical shields, with three (left) and six (right)

current loops. The field lines – which are contours of ⇢A� [6] calculated from the formulae for

the vector potential provided here – enter the high-µ shields at normal incidence as expected.

3

Liu et al.

Hyperbolic helical coil?Spherical coil?

What is the most appropriate form 
for the high field magnet?

[The world of Classical Physics is quite Wide]



Do find something rectangular/cylindrical

fill this space. 

try to find on SNS.



Do find something rectangular/cylindrical

You are looking at  
rectangular screen. 

u phone, also.





以下、付録



境界条件 (Boundary Condition) というもの

a glass of water

a `pacific’ of water

drawing by active boundary

同じ水面でも、その性質は容れ物に
よってエラく変化する。

注) 文字が現れるのは一瞬だけ→



配管系の規模に応じて選定できます 

日立ウォータハンマ防止器 
日本水道協会品質認証センター認証登録品 

水撃防止に有効 

●MTシリーズ 
●DTシリーズ 
●WHシリーズ 

カタログ

境界の効果は「反射」として現れる

例えば水道では（通称）蛇口という 
境界があって、急に閉じると強い圧 
力波を発生させてしまう。

→ 反射を減じて「無限を演出」したくなることもある

―3 ―

MTシリーズ MT-500・MT-500H（日本水道協会品質認証センター認証登録品）

注 意

① 空気封入圧力は、ご注文の際にご指定ください。ご指定のない場合は弊社基準封入圧力での出荷となります。
② 基準封入圧力は、ご指定がない場合の弊社工場出荷時の封入圧力を示します。
③ 簡易選定表は、流速3.0ｍ/s.衝撃圧力0.981MPaを基準にしたものです。
④ 封入圧力は年１回点検及び調整してください。
⑤ 施工の際には、取扱説明書を必ずご一読ください。
⑥ 不明な点がございましたら、弊社または弊社販売店までお問い合わせください。

寸法（mm） 

内容積 

最高使用圧力 

最高衝撃圧力 

最高使用温度 

使用流速 

基準封入圧力 

接続口径 

ミニトロール（日本水道協会品質認証センター認証登録品） 

85.7×114.3 

164cc 

0.98MPa 

1.72MPa 

50℃（MT-500）/60℃（MT-500H） 

3.0m/s 

0.15MPa 

15A（1/2B） 

水栓が開かれて、水が流れ
ている状態。 

水栓が急閉止されると、水
がミニトロールの中に流入
し、ダイアフラムを介して
封入空気が圧縮され水撃が
防止・軽減されます。 

簡易選定表 

1/2 

3/4 

1

15 
22.2 
30 
7.5 
15 
22.2 
7.5 
15 
22.2

0.21 0.27 0.34 0.41 0.48 0.55 0.62 0.69 0.76
給水配管径 
（B） 

配管長さ 
（m） 

流水圧力　MPa

水栓（開放） 

放水 

水栓（急閉） 

ショック 

封入空気 

ショック吸収時の 
ダイアフラムの位置 

ポリプロピレン 
ライナー 接続口径 

15A 
（1/2B） 

85.7mm

114.3mm

使用状態に於ける 
ダイアフラムの位置 

ミニトロール500（MT-500）簡易選定方法 

製品仕様 

配管長さ・流水圧力及び給水配管径から簡易選定表を用いて必要台数を選定してください。 

ミニトロール作動参考断図 
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－ 
 
－ 

そこで、こんなものが裏で 
使われている、ことがある。



電気回路（や音響回路など）のインピーダンス整合も 
　境界からの信号反射を減じるための工夫である。

昔なつかしい SCSI のターミネーター

終端抵抗：ターミネーター 
　　　　　と呼ぶことが多い

Pub. No. DN-6.7.2JA
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境界を「てっとりばやく」消してしまう方法

むかい合う境界を「はり合わせて」
しまって、境界はないけれども閉じ
た空間を作る。

周期境界条件

1 次元井戸型ポテンシャルの問題では、x=0 と x=L 
を同一視して、空間を「輪」にしてしまう。→→

... でも、ちょっと、わざとらしくない？
空間を曲げないと輪にならないよ？？



ようやく、本日の問題設定：

有限な 1 次元の格子上でフェルミ粒子が飛び移る系

RAPID COMMUNICATIONS

CONNECTING DISTANT ENDS OF ONE-DIMENSIONAL . . . PHYSICAL REVIEW B 83, 060414(R) (2011)
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FIG. 3. (Color online) (a) Spin correlation functions 〈Sα
j Sα

j ′ 〉
(α = x,z) in an XXZ chain for L = 80 and (",M) = (0.5,0) as
a function of the distance |j − j ′|, where sites (j,j ′) are selected
as j = L/2 − [r/2] and j ′ = L/2 + [(r + 1)/2]. Squares and circles
represent DMRG data for an open chain with SSD and a uniform open
chain, respectively, while lines show the analytic result for a uniform
periodic chain. (b) Schematic showing the relation between pairs
(j,j ′) in the open chain with SSD and those in the periodic chain.

change of the ground state. We thus conclude that the change
in slope of EE is not peculiar to a specific model but a general
outcome of the SSD when applied to a critical model.

Correlation functions. We next investigate two-spin corre-
lation functions. Here, we consider a spin-1/2 XXZ chain
in the critical regime, for which the asymptotic forms of the
correlation functions are known to be

〈
Sx

0 Sx
r

〉
= Ax

0
(−1)r

rη
− Ax

1
cos(Qr)
rη+1/η

+ · · · , (7)

〈
Sz

0S
z
r

〉
− M2 = − 1

4π2ηr2
+ Az

1
(−1)r cos(Qr)

r1/η
+ · · · , (8)

where Q = 2πM . The exponent η and the amplitudes Ax
0 , Ax

1 ,
and Az

1 were obtained as a function of " and M .11,15–17 Figure 3
shows DMRG results for ground-state correlation functions in
an XXZ chain, Eq. (2), with SSD. We also plot DMRG data
for a uniform open chain as well as the analytic result for a
uniform periodic chain; the latter is obtained by replacing r in
Eqs. (7) and (8) with L

π
sin( π |j−j ′|

L
). As shown in Fig. 3, the

results for the open chain with SSD agree almost completely
with those for the periodic chain.

Figure 4(a) shows the ground-state correlation function
〈Sj · Sj ′ 〉 in a small system calculated by exact diagonalization.
Data are plotted as a function of position j and “distance” r =
min(|j − j ′|,L − |j − j ′|) [see Fig. 4(b)]. We again observe
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0

0.2

0.4

(−
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| j
−

j′|
〈S

j
S

j′
〉

j

XXZ chain, ∆=1.0, M=0

r =1

r =2
r =3
r =4
r =6
r =12

(a)

(b)
j j =j+r jj ′ ′=j+r-L

L1

FIG. 4. (Color online) (a) Spin correlation function (−1)r〈Sj ·
Sj ′ 〉, with j ′ = j + r (mod L), in an XXZ chain for L = 24 and
(",M) = (1.0,0) as a function of j and r . Symbols show data for an
open chain with SSD: crosses represent correlations between sites j

and j ′ = j + r (pairs “within” the chain), while squares represent
those between j and j ′ = j + r − L (pairs “across” the edges).
Lines show values of correlations in the uniform periodic chain.
(b) Schematic showing the two sites (j,j ′) at a “distance” r .

that the correlations in the open chain with SSD are in excellent
agreement with those in the uniform periodic chain; The
results are independent of position j , and more remarkably,
the correlations between sites j and j ′ = j + r − L, which
are located at the distance r across the open ends, have the
same value as those in the periodic chain.18 We have observed
the same phenomena as shown in Figs. 3 and 4 for several
parameter sets of (",M). The results indicate that correlation
functions, and presumably all observables, in the ground state
of systems with SSD become equal to those in uniform periodic
systems.

We note that for the two-leg ladder with zero magnetization,
M = 0, which has an energy gap above the singlet ground state,
the spin correlation decays exponentially even in systems with
SSD and no recovery of the correlation between edge spins
is observed. This suggests that the SSD does not work for
spin-gapped systems.

Wave functions. Finally, we discuss the overlap of ground-
state wave functions. Using the exact diagonalization method,
we calculated the ground-state wave function |vSSD〉 of an
XXZ chain, Eq. (2), with SSD for L ! 24 and several sets of
(",M), and compared it with the ground-state wave function
|vPBC〉 of the uniform periodic chain. We then found that the
overlap of those ground-state wave functions is very close to
unity; the deviation from unity is at most |1 − 〈vSSD|vPBC〉| "
10−3 and exactly 0 within the numerical accuracy of 10−14

for the XX case (" = 0). The result indicates that the ground
states |vSSD〉 and |vPBC〉 are equivalent at the level of the wave
function.18

We note that the equivalence of the ground-state wave
functions is not trivial even in the case of an XX chain [Eq. (2)
with " = 0]. Through the Jordan-Wigner transformation, the
XX chain is mapped onto the free fermion system and the
one-particle eigenstates of the periodic chain are simple plane
waves. In contrast, the Hamiltonian of an open chain with SSD
is not translationally invariant and its one-particle eigenstates
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We investigate the effect of a nonuniform deformation applied to one-dimensional (1D) quantum systems,
where the local energy scale is proportional to gj = [sin(jπ/N )]m determined by a positive integer m, site
index 1 ! j ! N − 1, and system size N . This deformation introduces a smooth boundary to systems with
open-boundary conditions. When m " 2, the leading 1/N correction to the ground-state energy per bond e

(N)
0

vanishes and one is left with a 1/N2 correction, the same as with periodic boundary conditions. In particular,
when m = 2, the value of e

(N)
0 obtained from the deformed open-boundary system coincides with the uniform

system with periodic boundary conditions. We confirm the fact numerically for correlated systems, such as the
extended Hubbard model, in addition to 1D free-fermion models.

DOI: 10.1103/PhysRevA.83.052118 PACS number(s): 03.65.Aa, 05.30.Fk, 71.10.Fd

I. INTRODUCTION

Periodic boundary conditions (PBCs) are often more
convenient than open-boundary conditions (OBCs), when
asymptotic properties of one-dimensional (1D) quantum sys-
tems are studied in the thermodynamic limit. This is partially
because boundary energy corrections exist under OBCs, where
eigenstates are not translationally invariant. Systems with
PBCs normally contain smaller finite-size effects, and this
property of PBCs is appropriate for accurate determination of
bulk properties by means of finite-size scaling [1–3].

In numerical studies of lattice models, OBCs are often
chosen for technical reasons. In particular, the majority of
practical numerical analyses by the density-matrix renormal-
ization group (DMRG) method [4–6] are performed under
OBCs. Concerning finite-size systems with PBCs, the crucial
point in DMRG is the ring-shaped geometry, which reduces
the decay rate of singular values [7]. Although recent progress
in DMRG and tensor product formalisms made it possible
to include the PBCs in a natural manner [7–10], numerical
implementation requires additional computational resources
as compared with conventional DMRG analyses.

A way of suppressing the boundary energy corrections
induced by OBCs is to introduce smooth boundary conditions
(SBCs) [11,12]. Recently we proposed a variant of the SBCs,
where the local energy scale of N -site systems is proportional
to the deformation function [sin(jπ/N)]2 specified by the site
index 1 ! j ! N − 1 [13,14]. This sine-squared deformation
(SSD) [15] completely suppresses the boundary effects when
the ground-state energy of a free-fermion model on a 1D lattice
is considered. In this paper we generalize the deformation
function, which is given by gj = [sin(jπ/N )]m, where m is a
positive integer [16]. In the next section, we examine the effect
of this sinusoidal deformation by gj up to m = 5 when it is
applied to the 1D free-fermion model. It is shown that the case
m = 2, the SSD, is the most efficient for the suppression of
the boundary effect.

Another trial in this paper is the application of SSD to
correlated systems. As typical examples of correlated systems,

we choose the spinless-fermion model with nearest-neighbor
interaction and the extended Hubbard model; we report the
numerical result obtained by DMRG in Sec. III. When the
interaction is present, the determination of the chemical
potential is nontrivial. We present a systematic way of solving
this problem in Sec. IV. We summarize results in the last
section.

II. SINUSOIDAL DEFORMATION

We start from the sinusoidal deformation applied to the
free-fermion model on the 1D lattice. Consider a tight-binding
model represented by the Hamiltonian

H(N) = −t

N−1∑

j=1

(c†j cj+1 + c
†
j+1cj ) − αt(c†Nc1 + c

†
1cN ), (1)

where N is the system size, and t is the hopping energy.
Operators c

†
j and cj represent the creation and annihilation of

fermions, respectively. The parameter α specifies the boundary
condition, where OBCs and PBCs correspond to α = 0 and
α = 1, respectively. (The choice α = −1 is known as the
antiperiodic boundary conditions, which we do not treat in this
paper.) For each boundary condition, the one-particle energy
is expressed as

ε$ =
{

−2t cos
(

π$
N+1

)
for OBC (α = 0),

−2t cos
( 2π$

N

)
for PBC (α = 1),

(2)

where the energy index $ runs from 1 to N . The ground-state
energy E

(N)
0 at half filling is obtained as the sum of ε$ below

the Fermi energy εF = 0.
Throughout this paper we focus on the system size

dependence on the energy per site E
(N)
0 /N or the energy per

bond, which is E
(N)
0 /N under PBCs and is E

(N)
0 /(N − 1) under

OBCs. After a short algebra, one obtains

E
(N)
0

N
= −2t

π
+ t

N

(
1 − 2

π

)
+ O

(
1

N2

)
(3)
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空間が離散的、つまり「並んだ格子点」で表現されている点を除いて、井戸型
ポテンシャルと全く同じ問題。この格子上に置かれた粒子は、確率振幅 -t で左
右の格子に飛び移り、境界である j = 1 や j = N から外へ、つまり j = 0 や j = 
N+1 へと出て行くことはない。

粒子を格子点の数の半分まで入れて、物理量を 
観察してみよう。（フェルミ粒子だから、波動 
関数はスレーター行列式で与えられる。）
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FIG. 2. (Color online) Asymptotic behavior of e
(N)
0 for the

deformed chains when 1 ! m ! 5 with respect to e
(N)
0 of the system

with PBCs. We choose t as the unit of the energy. A logarithmic
correction is present when m = 1.

checked the uniformity (the translation invariance) of the bond
correlation function down to 16 digits in numerical precision.
When m " 3, the boundary effects appear again. In this case
the bond correlation function toward the system boundary
does not oscillate, and decreases in monotonic manner. Such
behaviors for each m might be related to the suppression of
the boundary corrections in e

(N)
0 .

We compare the efficiency of SSD (m = 2) with the SBCs
proposed in Refs. [11] and [12]. Figure 4 shows the bond
correlation function for both cases at half filling, where the
length of the boundary area in the SBC is chosen as M = 10
and 30 when the system size is N = 1000. Although bulk
property is well captured by the SBC already for M = 30,
boundary fluctuations are still present. On the other hand,
the bond correlation function is almost uniform away of the
boundary.
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FIG. 3. (Color online) Expectation value of the bond correlation
function 〈c†j cj+1 + c

†
j+1cj 〉 with respect to j under sinusoidal defor-

mation.
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FIG. 4. (Color online) Comparison of the expectation value of
the bond correlation function at half filling under SSD (m = 2) and
a SBC in Refs. [11] and [12]. The number M in the case of the SBC
specifies the length of area where the interactions are modified near
the system boundary. The bottom graph shows the numerical details
when M = 30 (SBC) with respect to SSD.

Now we discuss the way of treating the deformed system
away from half filling. For the undeformed systems with OBCs
or PBCs, it is sufficient to include the chemical potential
term −µ

∑N
j=1 nj in Eq. (1), where nj = c

†
j cj is the number

operator. The value of µ adjusts the Fermi energy to zero, and
is given by

µ(f ) = −2t cos(πf ), (11)

where f is the filling factor,

f = 1
N

N∑

j=1

〈nj 〉. (12)

A natural way of introducing µ(f ) under the sinusoidal
deformation is to write down the Hamiltonian as a sum of
the local terms,

H(N)
sine =

N−1∑

j=1

[
sin

(
jπ

N

)]m

hj,j+1 =
N−1∑

j=1

gjhj,j+1, (13)

where µ(f ) is included in the bond operator,

hj,j+1 = −t(c†j cj+1 + c
†
j+1cj ) − µ

2
(nj + nj+1). (14)

In order to confirm the validity of these constructions in
Eqs. (11)–(14), we carried out numerical calculations for
the selected fillings f = 1/4 and f = 1/8. Figure 5 shows
the N−2 dependence of e

(N)
0 = E

(N)
0 /B(N), where E

(N)
0 is the

ground-state energy for each filling. We plot the data only when
the particle number p ≡ f N is even. Analogous to half filling,
the bond energy e

(N)
0 with PBCs coincides with that obtained
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with OBCs, where the leading order of the finite-size correction
is proportional to N−1. The correction of the same order also
exists for the energy per bond. With PBCs, one finds

E
(N)
0

N
= −2t

π
+ 2π t

3N2
+ O

(
1

N3

)
, (4)

where the leading correction is of the order of N−2. The
difference between Eqs. (3) and (4) chiefly comes from the
presence of the boundary energy which exists only when OBCs
are imposed.

The sinusoidal deformation introduces a position-
dependent energy scale gj = [sin(jπ/N )]m to each bond of
the system with OBCs, where m is the positive integer [13,14].
Deforming H(N) in Eq. (1), we obtain the corresponding
free-fermionic Hamiltonian

H(N)
sine = −t

N−1∑

j=1

[
sin

(
jπ

N

)]m

(c†j cj+1 + c
†
j+1cj ). (5)

We have not obtained an analytical solution for the one-particle
spectrum of H(N)

sine so far, except for the zero-energy state. Thus
we perform numerical analyses in the following investigations
on the ground state.

Since we are interested in the ground-state energy per site
(or per bond), we introduce the normalization factor

B(N) =
N−1∑

j=1

[
sin

(
jπ

N

)]m

=
N−1∑

j=1

gj , (6)

which is the sum of the deformation factors over the entire
system. When m is an odd positive integer, we have

B(N) =
(m−1)/2∑

"=0

(−1)"

(2")m−1

(
m
"

)
cot

[
(m − 2")π

2N

]
, (7)

and when m is an even positive integer, we have

B(N) = N

2m

(
m

m/2

)
. (8)

We represent the ground-state energy of H(N)
sine at half filling by

the notation E
(N)
0 . It is expected that the normalized energy

e
(N)
0 = E

(N)
0

B(N)
(9)

converges to −2t/π in the large N limit in analogy to Eqs. (3)
and (4). We refer to e

(N)
0 in Eq. (9) as the energy per bond

in the following. As a convention, we set B(N) = N − 1 for
the system with OBCs, and B(N) = N with PBCs, where these
values just represent the number of bonds. Using this extended
definition of B(N), we can represent the energy per bond by
Eq. (9) regardless of the boundary condition or the presence
of deformation.
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FIG. 1. (Color online) Convergence of e
(N)
0 in Eq. (9) with respect

to N at half filling. We choose t as the unit of the energy. Data with
OBCs, PBCs, and the deformed cases with m = 1–5 are shown.

We regard t as the unit of the energy in the numerical
analyses. Figure 1 shows the N dependence of e

(N)
0 in Eq. (9)

for the undeformed systems with OBCs, PBCs, and the
deformed systems from m = 1 to 5. When the PBCs are
imposed, the convergence of e

(N)
0 with respect to N−2 is linear,

and there is an even-odd oscillation with respect to the particle
number N/2. Similarly, the linear N−2 dependence is observed
when m ! 2 under the sinusoidal deformation. In the case
m = 1, there is an additional logarithmic correction, as will be
shown later. It should be noted that when the particle number
N/2 is odd, e

(N)
0 obtained with the sinusoidal deformation

for m = 2 coincides with e
(N)
0 obtained with PBCs [17]. This

complete agreement is checked down to the smallest digit in
numerical precision. Throughout this paper we use the exact
diagonalization in order to reduce any numerical errors to
minimum.

In order to confirm the N−2 dependence of e
(N)
0 with the

sinusoidal deformation under m ! 2, we plot the difference
between e

(N)
0 obtained with PBCs (when N/2 is even) and e

(N)
0

with the sinusoidal deformation. To avoid any confusion, let
E

(N)
PBC and E(N)

sine denote the ground-state energy obtained with
PBCs and with the sinusoidal deformation, respectively. We
also use similar notation for the normalization factors B

(N)
PBC =

N and B(N)
sine for the normalization factor defined in Eq. (6).

Figure 2 depicts the magnified difference

N2[e(N)
PBC − e(N)

sine

]
≡ N2

[
E

(N)
PBC

B
(N)
PBC

− E(N)
sine

B
(N)
sine

]

(10)

when N is even. It is shown that the logarithmic cor-
rection N−2 log N is present when m = 1, and is absent
when m ! 2.

Figure 3 shows the spatial distribution of the bond correla-
tion function 〈c†j cj+1 + c

†
j+1cj 〉 at half filling when N = 1000.

The Friedel oscillations induced by the boundary are clearly
observed when OBCs are imposed (the asterisks), and weaker
oscillations are observed with the sinusoidal deformation when
m = 1. Only when m = 2, there are no oscillations at all; we
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with OBCs, where the leading order of the finite-size correction
is proportional to N−1. The correction of the same order also
exists for the energy per bond. With PBCs, one finds
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where the leading correction is of the order of N−2. The
difference between Eqs. (3) and (4) chiefly comes from the
presence of the boundary energy which exists only when OBCs
are imposed.

The sinusoidal deformation introduces a position-
dependent energy scale gj = [sin(jπ/N )]m to each bond of
the system with OBCs, where m is the positive integer [13,14].
Deforming H(N) in Eq. (1), we obtain the corresponding
free-fermionic Hamiltonian
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[
sin

(
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†
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We have not obtained an analytical solution for the one-particle
spectrum of H(N)

sine so far, except for the zero-energy state. Thus
we perform numerical analyses in the following investigations
on the ground state.

Since we are interested in the ground-state energy per site
(or per bond), we introduce the normalization factor
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and when m is an even positive integer, we have

B(N) = N

2m

(
m

m/2

)
. (8)

We represent the ground-state energy of H(N)
sine at half filling by

the notation E
(N)
0 . It is expected that the normalized energy
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0 = E
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0

B(N)
(9)

converges to −2t/π in the large N limit in analogy to Eqs. (3)
and (4). We refer to e

(N)
0 in Eq. (9) as the energy per bond

in the following. As a convention, we set B(N) = N − 1 for
the system with OBCs, and B(N) = N with PBCs, where these
values just represent the number of bonds. Using this extended
definition of B(N), we can represent the energy per bond by
Eq. (9) regardless of the boundary condition or the presence
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0 in Eq. (9) with respect

to N at half filling. We choose t as the unit of the energy. Data with
OBCs, PBCs, and the deformed cases with m = 1–5 are shown.

We regard t as the unit of the energy in the numerical
analyses. Figure 1 shows the N dependence of e

(N)
0 in Eq. (9)

for the undeformed systems with OBCs, PBCs, and the
deformed systems from m = 1 to 5. When the PBCs are
imposed, the convergence of e

(N)
0 with respect to N−2 is linear,

and there is an even-odd oscillation with respect to the particle
number N/2. Similarly, the linear N−2 dependence is observed
when m ! 2 under the sinusoidal deformation. In the case
m = 1, there is an additional logarithmic correction, as will be
shown later. It should be noted that when the particle number
N/2 is odd, e

(N)
0 obtained with the sinusoidal deformation

for m = 2 coincides with e
(N)
0 obtained with PBCs [17]. This

complete agreement is checked down to the smallest digit in
numerical precision. Throughout this paper we use the exact
diagonalization in order to reduce any numerical errors to
minimum.

In order to confirm the N−2 dependence of e
(N)
0 with the

sinusoidal deformation under m ! 2, we plot the difference
between e

(N)
0 obtained with PBCs (when N/2 is even) and e

(N)
0

with the sinusoidal deformation. To avoid any confusion, let
E

(N)
PBC and E(N)

sine denote the ground-state energy obtained with
PBCs and with the sinusoidal deformation, respectively. We
also use similar notation for the normalization factors B

(N)
PBC =

N and B(N)
sine for the normalization factor defined in Eq. (6).

Figure 2 depicts the magnified difference
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]
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[
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− E(N)
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when N is even. It is shown that the logarithmic cor-
rection N−2 log N is present when m = 1, and is absent
when m ! 2.

Figure 3 shows the spatial distribution of the bond correla-
tion function 〈c†j cj+1 + c

†
j+1cj 〉 at half filling when N = 1000.

The Friedel oscillations induced by the boundary are clearly
observed when OBCs are imposed (the asterisks), and weaker
oscillations are observed with the sinusoidal deformation when
m = 1. Only when m = 2, there are no oscillations at all; we

052118-2

393

Errata

Spherical Deformation for One-Dimensional Quantum Systems

Andrej Gendiar, Roman Krcmar and Tomotoshi Nishino

Prog. Theor. Phys. 122 (2009), 953.

(Received December 10, 2009; Revised December 23, 2009)

In the article we have published, we studied the finite-size correction to the energy per site
EN/N for the spherically deformed free fermion lattice, whose Hamiltonian is given by

Ĥ(n)
S =

N−1X

!=1

»
sin

!π
N

–n
 
−t ĉ†! ĉ!+1 − t ĉ†!+1ĉ! − µ

ĉ†! ĉ! + ĉ†!+1ĉ!+1

2

!
(1)

for the case n = 1. While we proceeded to a further study on the spherical deformation, we noticed
the data shown in Figs. 2–7 were incorrect, and these figures corresponded to the Hamiltonian for the
case n = 2. This error happened due to a very primitive confusion in the file name of computational
source codes, and we misused the data with n = 2, instead of n = 1. We show appropriate data for
the typical case µ = 0, which corresponds to the half filling.

Fig. 1. Bond correlations at half filling calculated

for Ĥ
(n)
S with n = 0, 1, and 2.

Fig. 2. Finite-size corrections to the energy.

To correct the former Fig. 2, we draw Fig. 1 which shows bond correlation function 〈ĉ†! ĉ!+1 +

ĉ†!+1ĉ!〉 calculated for ĤO = Ĥ(0)
S , Ĥ(1)

S , and Ĥ(2)
S . Compared with the correlation obtained by

ĤO, one finds that Ĥ(1)
S exhibits a weaker position dependence. Small fluctuations are, however,

present near the system boundary in contrast to the negligible dependence for Ĥ(2)
S . These position

Fig. 3. Occupation 〈c†!c!〉 at quarter filling.

dependencies are related to the finite-size correc-
tions to the ground-state energy, as shown in Fig. 2,
which correspond to the former Fig. 4. For Ĥ(1)

S the
corrections are proportional to 1/N log N , in con-
trast to the 1/N2-dependence for Ĥ(2)

S . Figure 3
corresponds to the former Fig. 6, where the occu-
pation 〈ĉ†! ĉ!〉 is plotted with respect to !. For Ĥ(1)

S

there is a density fluctuation near the system bound-
ary, while it is almost absent for Ĥ(2)

S . In conclu-
sion, the boundary effects are reduced by way of
the spherical deformation from Ĥ(0)

S to Ĥ(1)
S , but

the reduction effect is still insufficient in the sense
that the ground-state energy contains the logarith-
mic correction shown in Fig. 2.
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Dúbravská cesta 9, SK-841 04, Bratislava, Slovakia

2Institute for Theoretical Physics C, RWTH University Aachen,
D-52056 Aachen, Germany

3Department of Physics, Graduate School of Science, Kobe University,
Kobe 657-8501, Japan

(Received March 31, 2009; Revised July 15, 2009)

System-size dependence of the ground-state energy EN is investigated for N -site one-
dimensional (1D) quantum systems with open boundary condition, where the interaction
strength decreases towards the both ends of the system. For the spinless Fermions on the
1D lattice we have considered, it is shown that the finite-size correction to the energy per
site, which is defined as EN/N − limN→∞ EN/N , is of the order of 1/N2 when the reduction
factor of the interaction is expressed by a sinusoidal function. We discuss the origin of this
fast convergence from the viewpoint of the spherical geometry.

Subject Index: 021, 047, 397

§1. Introduction

A purpose of numerical studies in condensed matter physics is to obtain bulk
properties of systems in the thermodynamic limit. In principle numerical methods
are applicable to systems with finite degrees of freedom, and therefore occasionally
it is impossible to treat infinite system directly. A way of estimating the thermody-
namic limit is to study finite-size systems, and subtract the finite-size corrections by
means of extrapolation with respect to the system size.1),2)

As an example of extensive functions, which is essential for bulk properties,
we consider the ground state energy EN of N -site one-dimensional (1D) quantum
systems. In this article we focus on the convergence of energy per site EN/N with
respect to the system size N . In order to clarify the discussion, we specify the form
of lattice Hamiltonian

Ĥ =
∑

!

ĥ!,!+1 +
∑

!

ĝ! , (1.1)

which contains on-site terms ĝ! and nearest neighbor interactions ĥ!,!+1. We assume
that the operator form of ĥ!,!+1 and ĝ! are independent of the site index !, which
means that Ĥ is translationally invariant in the infinite N limit. It is possible to
include ĝ! into ĥ!,!+1 by the redefinition

ĥ!,!+1 +
ĝ! + ĝ!+1

2
→ ĥ!,!+1 , (1.2)

Andrej Gendiar 氏が m = 2 の場合について集めた計算データを、メールで
受け取る際の「ドサクサ」で、私は m = 1 のデータだと思い込んで論文を
書いてしまった。↓ そして「運悪く」そのまま掲載されてしまった .....

科学者は「正直者」でなければならない。（但し論文を書く時「だけ」） 
「すんません、m=2 の間違いでした」という報告を書いて、その雑誌に 
掲載してもらった。
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with OBCs, where the leading order of the finite-size correction
is proportional to N−1. The correction of the same order also
exists for the energy per bond. With PBCs, one finds

E
(N)
0

N
= −2t

π
+ 2π t

3N2
+ O

(
1

N3

)
, (4)

where the leading correction is of the order of N−2. The
difference between Eqs. (3) and (4) chiefly comes from the
presence of the boundary energy which exists only when OBCs
are imposed.

The sinusoidal deformation introduces a position-
dependent energy scale gj = [sin(jπ/N)]m to each bond of
the system with OBCs, where m is the positive integer [13,14].
Deforming H(N) in Eq. (1), we obtain the corresponding
free-fermionic Hamiltonian

H(N)
sine = −t

N−1∑

j=1

[
sin

(
jπ

N

)]m

(c†j cj+1 + c
†
j+1cj ). (5)

We have not obtained an analytical solution for the one-particle
spectrum of H(N)

sine so far, except for the zero-energy state. Thus
we perform numerical analyses in the following investigations
on the ground state.

Since we are interested in the ground-state energy per site
(or per bond), we introduce the normalization factor

B(N) =
N−1∑

j=1

[
sin

(
jπ

N

)]m

=
N−1∑

j=1

gj , (6)

which is the sum of the deformation factors over the entire
system. When m is an odd positive integer, we have

B(N) =
(m−1)/2∑

"=0

(−1)"

(2")m−1

(
m
"

)
cot

[
(m − 2")π

2N

]
, (7)

and when m is an even positive integer, we have

B(N) = N

2m

(
m

m/2

)
. (8)

We represent the ground-state energy of H(N)
sine at half filling by

the notation E
(N)
0 . It is expected that the normalized energy

e
(N)
0 = E

(N)
0

B(N)
(9)

converges to −2t/π in the large N limit in analogy to Eqs. (3)
and (4). We refer to e

(N)
0 in Eq. (9) as the energy per bond

in the following. As a convention, we set B(N) = N − 1 for
the system with OBCs, and B(N) = N with PBCs, where these
values just represent the number of bonds. Using this extended
definition of B(N), we can represent the energy per bond by
Eq. (9) regardless of the boundary condition or the presence
of deformation.
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FIG. 1. (Color online) Convergence of e
(N)
0 in Eq. (9) with respect

to N at half filling. We choose t as the unit of the energy. Data with
OBCs, PBCs, and the deformed cases with m = 1–5 are shown.

We regard t as the unit of the energy in the numerical
analyses. Figure 1 shows the N dependence of e

(N)
0 in Eq. (9)

for the undeformed systems with OBCs, PBCs, and the
deformed systems from m = 1 to 5. When the PBCs are
imposed, the convergence of e

(N)
0 with respect to N−2 is linear,

and there is an even-odd oscillation with respect to the particle
number N/2. Similarly, the linear N−2 dependence is observed
when m ! 2 under the sinusoidal deformation. In the case
m = 1, there is an additional logarithmic correction, as will be
shown later. It should be noted that when the particle number
N/2 is odd, e

(N)
0 obtained with the sinusoidal deformation

for m = 2 coincides with e
(N)
0 obtained with PBCs [17]. This

complete agreement is checked down to the smallest digit in
numerical precision. Throughout this paper we use the exact
diagonalization in order to reduce any numerical errors to
minimum.

In order to confirm the N−2 dependence of e
(N)
0 with the

sinusoidal deformation under m ! 2, we plot the difference
between e

(N)
0 obtained with PBCs (when N/2 is even) and e

(N)
0

with the sinusoidal deformation. To avoid any confusion, let
E

(N)
PBC and E(N)

sine denote the ground-state energy obtained with
PBCs and with the sinusoidal deformation, respectively. We
also use similar notation for the normalization factors B

(N)
PBC =

N and B(N)
sine for the normalization factor defined in Eq. (6).

Figure 2 depicts the magnified difference

N2[e(N)
PBC − e(N)

sine

]
≡ N2

[
E

(N)
PBC

B
(N)
PBC

− E(N)
sine

B
(N)
sine

]

(10)

when N is even. It is shown that the logarithmic cor-
rection N−2 log N is present when m = 1, and is absent
when m ! 2.

Figure 3 shows the spatial distribution of the bond correla-
tion function 〈c†j cj+1 + c

†
j+1cj 〉 at half filling when N = 1000.

The Friedel oscillations induced by the boundary are clearly
observed when OBCs are imposed (the asterisks), and weaker
oscillations are observed with the sinusoidal deformation when
m = 1. Only when m = 2, there are no oscillations at all; we
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境界へ向けて、飛び移りの大きさを 
連続的に変化させて行くだけで、系 
の右端と左端が effective に接続され 
てしまった、と、解釈できるのだ。
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FIG. 3. (Color online) (a) Spin correlation functions 〈Sα
j Sα

j ′ 〉
(α = x,z) in an XXZ chain for L = 80 and (",M) = (0.5,0) as
a function of the distance |j − j ′|, where sites (j,j ′) are selected
as j = L/2 − [r/2] and j ′ = L/2 + [(r + 1)/2]. Squares and circles
represent DMRG data for an open chain with SSD and a uniform open
chain, respectively, while lines show the analytic result for a uniform
periodic chain. (b) Schematic showing the relation between pairs
(j,j ′) in the open chain with SSD and those in the periodic chain.

change of the ground state. We thus conclude that the change
in slope of EE is not peculiar to a specific model but a general
outcome of the SSD when applied to a critical model.

Correlation functions. We next investigate two-spin corre-
lation functions. Here, we consider a spin-1/2 XXZ chain
in the critical regime, for which the asymptotic forms of the
correlation functions are known to be

〈
Sx

0 Sx
r

〉
= Ax

0
(−1)r

rη
− Ax

1
cos(Qr)
rη+1/η

+ · · · , (7)

〈
Sz

0S
z
r

〉
− M2 = − 1

4π2ηr2
+ Az

1
(−1)r cos(Qr)

r1/η
+ · · · , (8)

where Q = 2πM . The exponent η and the amplitudes Ax
0 , Ax

1 ,
and Az

1 were obtained as a function of " and M .11,15–17 Figure 3
shows DMRG results for ground-state correlation functions in
an XXZ chain, Eq. (2), with SSD. We also plot DMRG data
for a uniform open chain as well as the analytic result for a
uniform periodic chain; the latter is obtained by replacing r in
Eqs. (7) and (8) with L

π
sin( π |j−j ′|

L
). As shown in Fig. 3, the

results for the open chain with SSD agree almost completely
with those for the periodic chain.

Figure 4(a) shows the ground-state correlation function
〈Sj · Sj ′ 〉 in a small system calculated by exact diagonalization.
Data are plotted as a function of position j and “distance” r =
min(|j − j ′|,L − |j − j ′|) [see Fig. 4(b)]. We again observe
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FIG. 4. (Color online) (a) Spin correlation function (−1)r〈Sj ·
Sj ′ 〉, with j ′ = j + r (mod L), in an XXZ chain for L = 24 and
(",M) = (1.0,0) as a function of j and r . Symbols show data for an
open chain with SSD: crosses represent correlations between sites j

and j ′ = j + r (pairs “within” the chain), while squares represent
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that the correlations in the open chain with SSD are in excellent
agreement with those in the uniform periodic chain; The
results are independent of position j , and more remarkably,
the correlations between sites j and j ′ = j + r − L, which
are located at the distance r across the open ends, have the
same value as those in the periodic chain.18 We have observed
the same phenomena as shown in Figs. 3 and 4 for several
parameter sets of (",M). The results indicate that correlation
functions, and presumably all observables, in the ground state
of systems with SSD become equal to those in uniform periodic
systems.

We note that for the two-leg ladder with zero magnetization,
M = 0, which has an energy gap above the singlet ground state,
the spin correlation decays exponentially even in systems with
SSD and no recovery of the correlation between edge spins
is observed. This suggests that the SSD does not work for
spin-gapped systems.

Wave functions. Finally, we discuss the overlap of ground-
state wave functions. Using the exact diagonalization method,
we calculated the ground-state wave function |vSSD〉 of an
XXZ chain, Eq. (2), with SSD for L ! 24 and several sets of
(",M), and compared it with the ground-state wave function
|vPBC〉 of the uniform periodic chain. We then found that the
overlap of those ground-state wave functions is very close to
unity; the deviation from unity is at most |1 − 〈vSSD|vPBC〉| "
10−3 and exactly 0 within the numerical accuracy of 10−14

for the XX case (" = 0). The result indicates that the ground
states |vSSD〉 and |vPBC〉 are equivalent at the level of the wave
function.18

We note that the equivalence of the ground-state wave
functions is not trivial even in the case of an XX chain [Eq. (2)
with " = 0]. Through the Jordan-Wigner transformation, the
XX chain is mapped onto the free fermion system and the
one-particle eigenstates of the periodic chain are simple plane
waves. In contrast, the Hamiltonian of an open chain with SSD
is not translationally invariant and its one-particle eigenstates
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that the correlations in the open chain with SSD are in excellent
agreement with those in the uniform periodic chain; The
results are independent of position j , and more remarkably,
the correlations between sites j and j ′ = j + r − L, which
are located at the distance r across the open ends, have the
same value as those in the periodic chain.18 We have observed
the same phenomena as shown in Figs. 3 and 4 for several
parameter sets of (",M). The results indicate that correlation
functions, and presumably all observables, in the ground state
of systems with SSD become equal to those in uniform periodic
systems.

We note that for the two-leg ladder with zero magnetization,
M = 0, which has an energy gap above the singlet ground state,
the spin correlation decays exponentially even in systems with
SSD and no recovery of the correlation between edge spins
is observed. This suggests that the SSD does not work for
spin-gapped systems.

Wave functions. Finally, we discuss the overlap of ground-
state wave functions. Using the exact diagonalization method,
we calculated the ground-state wave function |vSSD〉 of an
XXZ chain, Eq. (2), with SSD for L ! 24 and several sets of
(",M), and compared it with the ground-state wave function
|vPBC〉 of the uniform periodic chain. We then found that the
overlap of those ground-state wave functions is very close to
unity; the deviation from unity is at most |1 − 〈vSSD|vPBC〉| "
10−3 and exactly 0 within the numerical accuracy of 10−14

for the XX case (" = 0). The result indicates that the ground
states |vSSD〉 and |vPBC〉 are equivalent at the level of the wave
function.18

We note that the equivalence of the ground-state wave
functions is not trivial even in the case of an XX chain [Eq. (2)
with " = 0]. Through the Jordan-Wigner transformation, the
XX chain is mapped onto the free fermion system and the
one-particle eigenstates of the periodic chain are simple plane
waves. In contrast, the Hamiltonian of an open chain with SSD
is not translationally invariant and its one-particle eigenstates
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T he N -dependence of t he energy correct ion changes if we impose t he periodic
boundary condi t ions, where t he H amil tonian is given by

Ĥ P = ⌧ t
N ⌧ 1�

� = 1

�
ĉ†

� ĉ � + 1 + ĉ†
� + 1 ĉ �

�
⌧ t

�
ĉ†

N ĉ1 + ĉ†
1 ĉ N

�
. (2.8)

In t his case, t he one-par t icle wave funct ion is t he plane wave

� m ( � ) =

�
1
N

exp
�

i
2mπ( � ⌧ 1)

N

�
, (2.9)

where m is an integer t ha t sa t isfies ⌧ N / 2 + 1 ≤ m ≤ N / 2. T he corresponding
one-par t icle energy is

� m = ⌧ 2t cos
2mπ

N
. (2.10)

If N is a mul t iple of four, t he ground st a te energy a t half filling is calcula ted as

E N
P =

N / 4�

m = ⌧ N / 4 + 1

� m = ⌧ 2t cot
π
N

. (2.11)

T hus, t he fini te-size correct ion to t he energy per si te

E N
P

N
⌧

�
⌧

2
π

t
�

= ⌧
2t
N

cot
π
N

+
2t
π

�
2π t

3 N 2 (2.12)

is of t he order of 1 / N 2 .
A s verified in t he above calcula t ions, t he fini te-size correct ion to t he energy per

si te E N / N decreases faster for t he system wi t h t he periodic boundary condi t ions
t han wi t h t he open boundary condi t ions. R egardless of t his fact , t he open boundary
systems are often chosen in numerical st udies by t he densi ty ma t rix renormaliza t ion
group ( D M R G ) met hod3) , 20)–22) because of t he simplici ty in numerical calcula t ion. I t
should be noted t ha t for t hose systems t ha t exhibi ts incommensura te modula t ion, t he
open boundary condi t ion is more appropria te t han t he periodic boundary condi t ion.
T hus, i t will be convenient if t here is a way of decreasing t he fini te-size correct ion
to E N / N as fast as 1 / N 2 also for t he open boundary systems.

§3. Sp her ical defor m a t ion

We first consider t he N -si te open boundary system described by t he H amil tonian

Ĥ S = ⌧ t
N ⌧ 1�

� = 1

sin
� π
N

�
ĉ†

� ĉ � + 1 + ĉ†
� + 1 ĉ �

�
. (3.1)

C ompared wi t h t he undeformed H amil tonian Ĥ O in E q. (2·2), t he st rengt h of t he
hopping term is scaled by t he factor A � = sin( � π / N ), which decreases towards t he
system boundary as shown in F ig. 1. For a geomet rical reason which we discuss in

2
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A Generalization: Spherical Deformation
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N-site tight binding Hamiltonian

2

958 A . G endiar , R . K rcmar and T . N ishino

F ig. 1. A spherically deformed la t t ice, which cont ains ( N = 11)-si t es, drawn on t he upper half
of t he circumference. O pen circles denot e la t t ice si t es, where t he angle of t he � -t h si t e is
� � = ( � ⌧ 1

2 )π / N for � = 1, 2, . . . , N . T he lengt h of t he ver t ical line shows t he rela t ive st rengt h
sin( � π / N ) of t he bond drawn by t he t hick arc between � -t h and ( � + 1)-t h si t es.

F ig. 2. T he circles shows t he ex p ec t a t ion value �̂c†
� ĉ � + 1 + ĉ†

� + 1 ĉ � � of t he spherically deformed la t-
t ice Fermion model defined by Ĥ S when N = 1000. For comparison, we also plot t he same
ex pec t a t ion value for t he undeformed case defined by Ĥ O by t he cross mar ks.

t he nex t sect ion, we call t he modifica t ion from Ĥ O to Ĥ S t he spher ical deformation.
We regard N , t he number of si tes on t he upper half of t he circumference shown in
F ig. 1, as t he system size.

L et us observe t he N dependence of t he ground-st a te energy a t half filling,
where n � = � ĉ†

� ĉ � � = 1 / 2 is sa t isfied by t he par t icle-hole symmet ry. So far we have
not ob t ained t he analy t ic form of t he one-par t icle wave funct ion � m , excep t for t he
zero-energy st a te, and t he corresponding one-par t icle eigenvalue � m for t he deformed
H amil tonian Ĥ S . We t herefore calcula te t hem numerically by diagonalizing Ĥ S in
t he one-par t icle subspace. We t hen ob t ain t he expect a t ion value � ĉ†

� ĉ � + 1 + ĉ†
� + 1 ĉ � � and

t he ground st a te energy E N
S a t half filling. In t he following numerical calcula t ions,

we set t as t he uni t of t he energy.
F igure 2 shows � ĉ†

� ĉ � + 1 + ĉ†
� + 1 ĉ � � of t he ground st a te when N = 1000. For com-

parison, we also show t he same quant i ty ob t ained by t he undeformed H amil tonian
Ĥ O of t he same system size. A s i t is observed, t he spherical deforma t ion suppresses
t he posi t ion dependence in � ĉ†

� ĉ � + 1 + ĉ†
� + 1 ĉ � � . In t his sense we can say t ha t t he ground

Boundary effect on the 
bond energy 
disappears completely!

A system under Open Boundary Condition gives data as efficient as those under 
Periodic Boundary Condition, under the spherical deformation.
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�Setup and definitions

3/16What is SSD (sine-square deformation)?

Consider a lattice model on a chain of length L. (PBC imposed)

• Uniform Hamiltonian

• Chiral Hamiltonian

L1
2

• SSD Hamiltonian

Ex.) Heisenberg chain
1 2 L

Gendiar et al., PTP (2009-2010)
Hikihara, Nishino, PRB (2011)



�Suppression of boundary effects 

4/16What are special about SSD?

• Negligible Friedel oscillation
Uniform g.s. correlations

• Observed in 1D critical systems
XXZ, Hubbard, Kondo-lattice, …
Shibata, Hotta, PRB (2011) Hikihara, Nishino, PRB 83, 060414 (2011)

�Scaling of entanglement entropy 

�Wavefunction overlap 
Overlap between the g.s. of systems 
with PBC and SSD is almost 1.
• Rigorous proof for free-fermion models (XY, quantum Ising, …)

• CFT interpretation: H.K., JPA 44, 252001; 45, 115003 (2011)



Free fermion chain with SSD (1) 5/16

• Uniform Hamiltonian

: annihilation/creation of fermion at j.

Fourier.tr.

G.S. of       : Fermi sea  (              occupied)

• Chiral Hamiltonian

Momentum rep.

・・・・・・

If , then                    . (∵ )



Free fermion chain with SSD (2)
�SSD Hamiltonian

In terms of , 

Fermi sea is annihilated by chiral Hamiltonians!

Fermi sea is an exact eigenstate of           !

�Uniqueness of the ground state
Fermi sea is the unique g.s. of          .                    share the same g.s.

Outline of proof)
Free-fermion chain Æ XY spin chain (via Jordan-Wigner)
Perron-Frobenius thm tells: (i) the ground state of            is unique.
(ii) it has nonvanishing overlap with         .
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Results 7/16

• Any open/open correspondence?

• Yes, for free-fermion chain!

• But we need to add boundary potentials

• H0 and Hhalf share the same ground state But why?



Outline

Introduction

Boundary conditions in lattice models
• Tight-binding model with boundary potential

• Analytically solvable cases, eigenfunctions

Half-SSD

Summary
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�Hamiltonian
Tight-binding chain with boundary potential

� Tri-diagonal matrix

• The `hopping’ matrix T determines the 1-particle spectrum

• Eigenvalue problem

Analytically tractable?
Yes, for special (a, b)

9/16



List of exact solutions
• a = b = 0: Fixed-Fixed BC 

• a = b = 1: Free-Free BC 

• a = 0, b = 1: Fixed-Free BC 

• a = 1, b = -1: Free-Anti-free BC 

• a = q, b = 1/q: Saleur (proceedings, 1989)

Martin-Delgado, Sierra, 
Phys. Lett. B 364, 41 (1995)

Appendix in HK, Schuricht, Takahashi, PRB 92, 115137 (2015)
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How to get eigenfunctions
�Orbifolding?

Tight-binding on 
a periodic chain 
of length 4L

N

N

N

N

Neumann BC.: 

4L 1 2 3

2L

1 2 3

2L

N

N

1 2 3

2L

L
L+1

D
D

Dirichlet BC:

One can get eigenfunctions of T(1,-1) 
from the plane wave solutions on 
a periodic ring!

�Eigenfunctions

11/16



Outline

Introduction
Boundary conditions in lattice models

Half-SSD
• What is half-SSD? 

• Open/Half-SSD correspondence

• Self-duality, commuting property

Summary
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�Setup 
What is half SSD?

• Open-chain Hamiltonian

• Half-SSD Hamiltonian with boundary potetial

�Ground-state overlap

L=50 
half-filling

Exactly 1 
at b=1 Coincide 

at b=1

�Ground-state energies

Open/half-SSD correspondence! 

13/16



What happens at b=1?
�Hhalf in the H0-diagonal basis (L: even)

The other elements are all zero. 
Clearly                                         

Eigenfunctions of T(1,-1)

• Diagonal matrix elements

• Off-diagonal elements

Fermi sea of H0 is the g.s. of Hhalf! 

14/16



Self-dual Hamiltonian
� Interpolation between Hhalf and H0

• 1-parameter  Hamiltonian

N.B.:                

�Self-duality of H1
• Eigen-operators of H0

• Eigen-space Hamiltonian (H1)

Takes the same form as H1 in real-space!               

15/16



Summary 16/16

• Studied tight-binding chain with half-SSD

• The models shares the same ground state with
the tight-binding chain with special b.c.

• The b.c. = mixed Dirichlet-Neumann b.c.

• Decoupling structure in the `eigen-space’

• Extension to finite chemical potential

• Field theory: bosonization, CFT,  …

• Algebra? Anything to do with modular S-matrix?

• Extension to other boundary conditions?
Other mixed b.c. What about Robi b.c.?

• What are they good for?

Future directions
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with Isao Kishimoto, Tomomi Kitade
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͸͡Ίʹ

“Dipolar quantization and the infinite circumference limit of
two-dimensional conformal field theories”,
Nobuyuki Ishibashi, Tsukasa Tada
Int. J. Mod. Phys. A 31, 1650170 (2016) [arXiv:1602.01190v1]

The present formulation was also partially guided by previous approaches
in the study of string field theory (SFT) [37, 38]. It would be interesting
if one can find more direct connections between the present result and
SFT treatment, especially in the context of understanding the transition
between open and closed strings [39].

[37] M. Kiermaier, A. Sen and B. Zwiebach, JHEP0803, 050 (2008)
[arXiv:0712.0627 [hep-th]].
[38] T. Takahashi and S. Zeze, Prog. Theor. Phys.110, 159 (2003)
[hep-th/0304261].
[39] T. Takahashi, Prog. Theor. Phys. Suppl.188, 163 (2011).
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ཧڀݚݚձʮαΠϯ 2৐มܗʢSSDʣͱͦͷपลʯ
೔࣌: 2017೥ 6݄ 30೔ 10:30 - 17:20
ձ৔: ηϛφʔࣨ (160߸ࣨ)

ҹ৅ʹͨͬ͜࢒ͱ

SSD mechanism

·
〈
vSSD

∣∣ vPBC

〉
= 1

⇒ Β͔ͯͬؼ Mathematica Ͱ͔֬Ίͨ! (ͨ͠·͖ڻ)

· HSSD =
1

2
H0 −

1

4
(H+ +H−), H± |0〉 = 0

· H =
1

2
L0 −

1

4
(L1 + L−1), L0 |0〉 = L±1 |0〉 = 0

⇒ ҟͳ͕ͬͨํ͍ݴͰ͖Δ͸ͣ?
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1 ͸͡Ίʹ

2 λΩΦϯਅۭ
λΩΦϯ
DϒϨʔϯ
ͷ৔ͷཧ࿦ݭ
λΩΦϯਅۭ

3 Ұܥࢠྔݩ࣍ͱݭཧ࿦

4 ։ܥݭʹ͓͚ΔαΠϯೋ৐มܗ
Decoupling of left and right moving modes
Example of string propagations
Virasoro algebra for closed strings

5 λΩΦϯਅۭʹ͓͚Δดݭͷରশੑ
Energy-momentum tensor and Virasoro algebra

6 ·ͱΊ
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Ϙκϯܕ։ݭͷλΩΦϯ

։ݭͷݻ༗ঢ়ଶ

ঢ়ଶɹ (࣭ྔ)2 εϐϯ ੒෼਺

λΩΦϯ |p〉 − 1

α′ 0 1

ϕΫτϧཻࢠ αi
−1 |p〉 0 1 D − 2 = 24

ςϯιϧཻࢠ αi
−1α

j
−1 |p〉 +

1

α′ 2 D(D−2)
2 = 276

(piαj
−2 − pjαi

−1) |p〉
(ྟքݩ࣍: D = 26)

pj1 · · · pjMαi1
−n1

· · ·αiN
−nN

|p〉 , M2 =
( N∑

k=1

nk − 1
)
/α′

[
αi
n, α

j
m

]
= nδn+m,0δ

i,j
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DϒϨʔϯ

Polchinski ’95

DϒϨʔϯͱ͸ɺ։ݭͷ୺఺͕ͬͭ͘͘ p+ ໘ۂͷ௒ݩ࣍1
( p+ 1 ≤ 26 )

• Xµ(σ) (µ = 0, · · · , p): ϊΠϚϯڥք৚݅
Xi(σ) (i = p+ 1, · · · , 25): σΟϦΫϨڥք৚݅

• DϒϨʔϯࣗ਎͕ྗֶతͳର৅

• ։ݭ͸ DϒϨʔϯͷΏΒ͗Λද͢

• λΩΦϯͷଘࡏ͸Ϙκϯܕ DϒϨʔϯ
ͷෆ҆ఆੑΛࣔ͢

• όϧΫۭ࣌ʹ͸ด͕ݭଘ͢ࡏΔ

Xµ

X i

XM(σ)

p + 1 ḟඖᖹ㠃
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ͷ৔ͷཧ࿦ݭ (String Field Theory)

৔ φ(x)Λ֦ுͨ͠ݭͷ৔ Ψ[X(σ)]Λྗֶม਺ͱ͢Δཧ࿦
Witten ’86

S[Ψ] =
1

g2

∫ (
1

2
Ψ ∗QBΨ+

1

3
Ψ ∗Ψ ∗Ψ

)

=
1

g2

∫
dp+1x

{
−1

2
(∂µφ)

2 +
1

2α′φ
2 − 1

4
F 2
µν +

1

3
κ3
(
elogκα′∂2

φ
)3

+ · · ·
}

(κ = 3
√
3/4)

Xµ

X i

!
Ψ[X(σ)]

φ(x)

Aµ(x)

·
·
·
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λΩΦϯਅۭ

〈Ψ〉 = Ψ0

〈Ψ〉 = 0

V

0 Ψ

Ψ0

Sen ’99, Sen-Zwieback ’00,· · ·

T.T-Tanimoto ’02, Kishimoto-T.T ’02, · · ·

Schnabl ’05, Erler-Scnabl ’09, T.T-Zeze ’03, · · ·

Ishibashi ’14, Kishimoto-Masuda-T.T ’14, · · ·

ࡏͷ৔ͷཧ࿦ʹ͸҆ఆͳλΩΦϯਅۭ͕ଘݭ

λΩΦϯਅۭͰ͸ɺDϒϨʔϯ͕ফ໓
(Ψ0 ʹର͢ΔΤωϧΪʔ͕ɺDϒϨʔϯͷΤωϧΪʔΛ૬ࡴ)

λΩΦϯਅۭͰ͸ɺ։ݭͷ৔ͷΏΒ͗͸ήʔδࣗ༝౓ͱͳΔ
(DϒϨʔϯͷΏΒ͗ͷࣗ༝౓͕ফ͍͑ͯΔ)
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λΩΦϯਅ্ۭͰͷ”։ݭ”ͷϋϛϧτχΞϯ

Takahashi (’03), Takahashi-Zeze (’03)

L′ =
1

2
L′
0 −

1

4
(L′

2 + L′
−2) +

3

2

=

∮
dz

2πi

−1

4z
(z2 − 1)2 T ′(z) + · · ·

=

∫ π

−π

dσ

2π
sin2 σ T ′(σ) + · · ·

λΩΦϯਅ্ۭͷ։ݭͷϋϛϧτχΞϯʹαΠϯೋ৐ม͕ܗදΕ͍ͯΔ

⇐ ੴڮ-ଟాͷࢦఠ!
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SSD
։͍ͨҰܥݩ࣍ΛαΠϯೋ৐มܥͨ͠ܗͷجఈঢ়ଶ͸ɺपظతڥք
৚݅Λ՝ͨ͠ܥͷجఈঢ়ଶͱҰக͍ͯ͠Δɻ

SFT
λΩΦϯਅۭͰ͸ɺDϒϨʔϯ͕ফ໓͍ͯ͠ΔͷͰ։ݭͷλΩΦϯ
ঢ়ଶ͸جఈঢ়ଶͰ͸ͳ͘ͳΓɺόϧΫʹด͕ݭଘ͢ࡏΔͷͰดݭͷ
!ఈঢ়ଶʹͳΔ͸ͣͩجͷܥఈঢ়ଶ͕͜ͷج

༧ ૝
αΠϯೋ৐มܗ ( λΩΦϯਅۭ
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“Field Theories of Condensed Matter Physics”, E. Fradkin
ܥϑΣϧϛΦϯݩ࣍̍

ĤO = −t
N∑

l=0

(
ĉ†l ĉl+1 + ĉ†l+1ĉl

)
.

ĉl Λ

ĉl ≡ ei
π
2 lal (3.1)

ͱม͢׵ΔͱɺϋϛϧτχΞϯ͸

ĤO = −it
N∑

l=1

a†l (al+1 − al−1), (a0 = aN+1 = 0)

{al, a†l′} = δl,l′ , {al, al′} = {a†l , a
†
l′} = 0
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͞Βʹɺ

ϕ1
l ≡

1
√
2
(al + a†l ), ϕ2

l ≡
1

√
2i

(al − a†l ),

ͱͯ͠ɺΤϧϛʔτԋࢠࢉ ϕµ
l (µ = 1, 2)Λಋೖ͢Δͱɺ

ĤO = −it
N∑

l=0

(
ϕ1
l ϕ

1
l+1 + ϕ2

l ϕ
2
l+1

)
(ϕµ

0 = ϕµ
N+1 = 0)

{ϕµ
l , ϕ

ν
l′} = δl,l′δ

µν

ͷΑ͏ʹɺಠཱͳԋࢠࢉ ϕ1
l ͱ ϕ2

l ʹରͯ͠ରশͳܗʹॻ͖ͳ͓͢͜ͱ͕Ͱ͖Δɻ
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͜ͷܥͷ࿈ଓ͏͍ͯ͑͜ߟ͍ͯͭʹݶۃɻҰͭͷࣗ༝౓Λൈ͖ग़͠ɺͦΕΛ ϕl ͱͯ͠ߟ
͑Δɻ
·ͣɺͦͷ̍ࣗ༝౓ʹର͢ΔϋϛϧτχΞϯΛɺۮ਺αΠτͷԋࢠࢉͱح਺αΠτͷԋࢠࢉ
ʹ෼͚ͯ

ĤO = −
it

2

[
N+1

2

]

∑

k=1

{ϕ2k−1(ϕ2k − ϕ2k−2) + ϕ2k(ϕ2k+1 − ϕ2k−1)}

ͱॻ͘ɻ͜͜Ͱɺξk = ϕ2k−1, ηk = ϕ2k ͱ͍͏ԋࢠࢉΛಋೖ͢Δͱɺ൓ަ܎ؔ׵͸

{ξk, ξk′} = δk,k′ , {ηk, ηk′} = δk,k′ , {ξk, ηk′} = 0

Ͱ͋ΓɺϋϛϧτχΞϯ͸

ĤO = −
it

2

[
N+1

2

]

∑

k=1

{ξk(ηk − ηk−1) + ηk(ξk+1 − ξk)}

ͱͳΔɻ
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࿈ଓݶۃΛͱΔͱɺN → ∞ͷݶۃΛͱΔͱɺ࿈ଓݶۃΛͱͬͨϋϛϧτχΞϯ͕

ĤO = −
i

2π

∫ π

0

(
ξη′ + ηξ′

)
dσ

ͱͳΓɺ൓ަ͕܎ؔ׵

{ξ(σ), ξ(σ′)} = πδ(σ − σ′), {η(σ), η(σ′)} = πδ(σ − σ′),

{ξ(σ), η(σ′)} = 0,

ͱͳΔɻ
ք৚݅͸ɺNڥ Λۮ਺ʹอͪͳ͕ΒݶۃΛͱΔ৔߹ͱɺح਺ʹอͪͳ͕ΒݶۃΛͱΔ৔߹ͱ
Ͱҟͳͬͯ͘Δɻ
N ք৚݅͸ڥͷม਺ͷ্ࢠ਺ͷ৔߹ɺ֨ۮ͕ ϕ0 = ϕN+1 = 0Ͱ͋Δ͕ɺN + ਺ͱح1͕
ͳΔͨΊɺ࿈ଓม਺ͷڥք৚͕݅

η(0) = 0, ξ(π) = 0

ͱͳΔɻಉ༷ʹͯ͑ߟɺN ք৚݅͸ڥ਺ͷ৔߹ͷح͕

η(0) = 0, η(π) = 0

ͱͳΔɻ
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ΔͨΊʹɺݟʹཧ࿦ͱͷରԠΛΑΓ໌֬ݭ

ψ± ≡
1
√
2
(ξ ± η)

ͱఆٛ͢ΔͱɺϋϛϧτχΞϯ͕

ĤO =
i

2π

∫ π

0
(ψ+∂σψ+ − ψ−∂σψ−) dσ

ͱͳΓɺ൓ަ͕܎ؔ׵

{ψ+(σ), ψ+(σ′)} = πδ(σ − σ′), {ψ−(σ), ψ−(σ′)} = πδ(σ − σ′),

{ψ+(σ), ψ−(σ′)} = 0,

ͱͳΔɻ
͜Ε͸ɺ̎ݩ࣍ϚϤϥφϑΣϧϛΦϯܥʹର͢ΔϋϛϧτχΞϯͰ͋Γɺ։͍ͨ௒ݭཧ࿦ͷ
ϑΣϧϛΦϯ෦෼ʹରԠ͍ͯ͠Δ͜ͱ͕Θ͔Δɻ
ք৚݅͸ɺNڥ ਺ͷ৔߹ɺۮ͕

ψ+(0) = ψ−(0), ψ+(π) = −ψ−(π)

ͱͳΓɺNeveu-Schwarzܕͷڥք৚݅Ͱ͋ΔɻN ਺ͷ৔߹͸ɺح͕

ψ+(0) = ψ−(0), ψ+(π) = ψ−(π)

ͱͳΓɺRamondܕͷڥք৚݅Ͱ͋Δ͜ͱ͕Θ͔Δɻ
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αΠϯೋ৐มܥͨ͠ܗͷ࿈ଓݶۃ

ĤO =
i

2π

∫ π

0
sin2 σ (ψ+∂σψ+ − ψ−∂σψ−) dσ

N ք৚݅ڥͷܕ਺ͷ৔߹ɺNeveu-Schwarzۮ͕

ψ+(0) = ψ−(0), ψ+(π) = −ψ−(π)

N ք৚݅ڥͷܕ਺ͷ৔߹ɺRamondح͕

ψ+(0) = ψ−(0), ψ+(π) = ψ−(π)

ք৚͕݅͋ΔͨΊʹɺψ+(σ)ͱڥ ψ−(σ)͕ಠཱͳԋࢠࢉͱͳΒͳ͍ʂ
⇒ ։ݭͷಛ௃ʂ

ͳͥɺपظతڥք৚݅Λ΋ͭܥʢดܥݭʣΛهड़͢Δͷ͔?
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Decoupling of left and right moving modes
Example of string propagations
Virasoro algebra for closed strings

Open string Hamiltonian

The Hamiltonian of an open string is
given by

HO =

∫

C+

dz

2πi
zT (z) +

∫

C−

dz

2πi
zT (z),

T (z): the energy-momentum tensor.

C+

C−

1−1 O

Each term corresponds to Hamiltonians of left and right moving
modes, respectively, but they do not commute with each other due
to open boundary conditions on T (z).

The Hamiltonian is given by the zeroth component of the Virasoro
operators: L0. So, we do not encounter antiholomorphic Virasoro
operators in the open string system.
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Decoupling of left and right moving modes
Example of string propagations
Virasoro algebra for closed strings

Sine-squre-like deformation

Here, we consider the deformed Hamiltonian:

Hg = H+
g +H−

g , H±
g =

∫

C±

dz

2πi
g(z)T (z),

where g(z) is a holomorphic function satisfying g(±1) = ∂g(±1) = 0.

H+
g and H−

g are left and right moving modes of Hg.

The simplest example of g(z) is given by

g(z) = − 1

4z
(z2 − 1)2.

If we change the variable as z = exp(iθ), the weighting function in Hg is

changed to z−1g(z) = sin2 θ. Hence, the deformed Hamiltonian provides

a sort of generalization of the SSD Hamiltonian. In this sense, we call it

the sine-square-like deformation, or SSLD for short.
18 / 31



͸͡Ίʹ
λΩΦϯਅۭ

Ұܥࢠྔݩ࣍ͱݭཧ࿦
։ܥݭʹ͓͚ΔαΠϯೋ৐มܗ

λΩΦϯਅۭʹ͓͚Δดݭͷରশੑ
·ͱΊ

Decoupling of left and right moving modes
Example of string propagations
Virasoro algebra for closed strings

T (z) is expanded by holomorphic Virasoro operators only:

T (z) =
∞∑

n=−∞
Lnz

−n−2.

By using this expansion form and the Virasoro algebra, we can
obtain a commutation relation of T (z):

[T (z), T (z′)] = −(T (z) + T (z′) ) ∂δ(z, z′)− c

12
∂3δ(z, z′),

where c is the central charge of T (z).

By this equation, we can calculate the commutation relation
between H+

g and H−
g .

The important point is that surface terms appear in the calculation
as a result of derivatives of the delta function and these terms
include a singular factor δ(±1,±1).

19 / 31



͸͡Ίʹ
λΩΦϯਅۭ

Ұܥࢠྔݩ࣍ͱݭཧ࿦
։ܥݭʹ͓͚ΔαΠϯೋ৐มܗ

λΩΦϯਅۭʹ͓͚Δดݭͷରশੑ
·ͱΊ

Decoupling of left and right moving modes
Example of string propagations
Virasoro algebra for closed strings

However, the singular surface terms turn out to vanish due to the
factors g(±1) and ∂g(±1), which are set to zero in the definition
of Hg.

As a result, we find
[
H+

g , H−
g

]
= 0

and then the deformed system is decomposed into the left and
right moving parts as in periodic systems.

Accordingly, it is concluded that the deformed system described by
Hg corresponds not to an open string system, but to a closed
string system, although the Hamiltonian is constructed by a single
holomorphic energy-momentum tensor.

It should be noted that the zeros of g(z) and ∂g(z) at open
string boundaries cause the decoupling of the left and right
moving sectors!
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Decoupling of left and right moving modes
Example of string propagations
Virasoro algebra for closed strings

Now, we will illustrate equal-time contours generated by the
Hamiltonian for the simplest function

g(z) = − 1

4z
(z2 − 1)2.

with a focus on emergence of left and right moving sectors.

According to Ishibashi-Tada, we introduce the parameters, t and s,
into the worldsheet generated by Hg:

t+ is =

∫ z dz

g(z)
=

2

z2 − 1
,

where t denotes time and s parameterizes a string at a certain
time.
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Decoupling of left and right moving modes
Example of string propagations
Virasoro algebra for closed strings

Figure: Equal-time contours on the z plane (solid lines). Dashed lines
with arrows denote evolution of time t.

These contours have a remarkable feature that the string
boundaries are fixed at z = ±1 during propagation of the string.
One complex number t+ is corresponds to two points in the z
plane.
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Decoupling of left and right moving modes
Example of string propagations
Virasoro algebra for closed strings

Accordingly, we introduce a complex coordinate w = t+ is for the upper
half z plane and w̄ = t+ is for the lower half plane.

By this mapping, the upper half plane corresponds to the whole w plane,
and the lower half plane to the other w̄ plane:
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Decoupling of left and right moving modes
Example of string propagations
Virasoro algebra for closed strings

Hence, the equal-time contours by Hg lead us to the worldsheet
which consists of two complex planes.

The two planes, w and w̄, corresponding to the upper and lower
half z planes are generated by the left and right moving
Hamiltonian, H+

g and H−
g , respectively.

Therefore, they can be regarded as holomorphic and
antiholomorphic worldsheets of a closed string.
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Decoupling of left and right moving modes
Example of string propagations
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Now that we have obtained two decoupled Hamiltonians for the left and
right moving sectors, we can construct two independent Virasoro
operators according to Ishibashi-Tada:

Lκ =

∫

Ct
+

dz

2πi
g(z)fκ(z)T (z), L̃κ =

∫

Ct
−

dz

2πi
g(z)fκ(z)T (z),

where g(z) is the same function as that in the Hamiltonian Hg.
fκ(z) is defined by the differential equation

g(z)
∂

∂z
fκ(z) = κfκ(z).

For a constant time t, Ct
+ and Ct

− denote integral contours along the
equal-time line on the upper and lower half z plane, respectively.

We should note again that T (z) including in Lκ and L̃κ is the same
energy-momentum tensor of the open string system.
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Decoupling of left and right moving modes
Example of string propagations
Virasoro algebra for closed strings

L0 and L̃0 provide the left and right moving parts of the Hamiltonian,
that is, L0 = H+

g and L̃0 = H−
g .

Lκ satisfies continuous Virasoro algebra:

[Lκ, Lκ′ ] = (κ− κ′)Lκ+κ′

+
c

12

∫

Ct
+

dz

2πi

{
(κ− κ′)

(
∂2g

∂z2
− 1

2g

(
∂g

∂z

)2
)

+
κ3 − κ′3

2g

}
fκ+κ′(z).

Ishibashi-Tada ’16
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Decoupling of left and right moving modes
Example of string propagations
Virasoro algebra for closed strings

The right moving sector of the Virasoro operator L̃κ can be also defined
by integration along the integration path on the lower half plane.
Similarly, L̃κ satisfies the continuous Virasoro algebra.

Moreover, since Ct
+ and Ct

− have no intersections, Lκ and L̃κ commute

with each other:

[Lκ, L̃κ′ ] = 0.

Thus, we have found the two independent Virasoro algebras in a
deformed open string system, which can be regarded as the
Virasoro algebras for closed strings, that is, the holomorphic and
antiholomorphic parts.

Kishimoto, Kitade and T.T (’18)
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Energy-momentum tensor and Virasoro algebra

Energy-momentum tensor

We define an operator at the tachyon vacuum:

T (z) ≡ e−h(z){Q′, b(z)}

= T (z) + ∂h(z) jgh(z)− (∂h(z))2 +
3

2
e−h(z)∂2eh(z).

We find that T (z) satisfies the same OPE as T (z) with zero central
charge:

T (y)T (z) ∼ 2

(y − z)2
T (z) +

1

y − z
∂T (z).

Here, it should be noted that T (z) includes not only operators but also a
function in its form.

Since h(z) is related to a coordinate frame of worldsheets, T (z) has an
explicit dependence on the frame.
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Energy-momentum tensor and Virasoro algebra

Virasoro algebra

By using T (z), we can define the continuous Virasoro operator at the
tachyon vacuum:

Lκ ≡
∫

C+

dz

2πi
g(z)fκ(z)T (z), L̃κ ≡

∫

C−

dz

2πi
g(z)fκ(z)T (z),

where the weighting function is related to h(z) as g(z) = zeh(z).

Since eh(z) has second order zeros at z = ±1, g(z) also has second order
zeros at z = ±1.

These operators satisfy the holomorphic and antiholomorophic
continuous Virasoro algebra for c = 0. (L0 = H+ and L̃0 = H−.)

By definition of T (z), these operators commute with Q′
±:

[Q′
±, Lκ] = [Q′

±, L̃κ] = 0.

Thus, we have found the continuous Virasoro algebra at the tachyon
vacuum. 29 / 31
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Figure: String pictures before and after SSLD. The solid and dashed lines
correspond to holomorphic and antiholomorphic parts of a string. As a
result of SSLD, open string boundaries (black dots) become joined and
an open string divides to holomorphic and antiholomorphic strings.

31 / 31



Holographic duals of inhomogenous systems;

Rainbow chain and SSD

Shinsei Ryu
in collaboration with

Ian MacCormack (U Chicago),
Aike Liu (UIUC æ Caltech),

Masahiro Nozaki (U Chicago æ RIKEN/Berkeley)

University of Chicago

July 10, 2019

1 / 22



Introduction

• Inhomogeneous quantum many-body systems (on a lattice):

H =
ÿ

i

hi,i+1 =∆ H =
ÿ

i

f(xi, xi+1)hi,i+1

• Entanglement (Rindler) Hamiltonian: f(x) = R
2≠x

2
2R

• Sine-square deformation (SSD):
f(x) = cos 2fix

L
+ 1 = sin2 fi(x≠L/2)

L
[Gendiar-Krcmar-Nishino (08),

Hikihara-Nishino (11), ...]

• Möbius evolution: f(x) = cos 2fix

L
+


1 ≠ const./L2

[Ishibashi-Tada (15-16); Okunishi (16); Wen-SR-Ludwig (16)]

• Rainbow chain: f(x) = e
≠h|x|
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Rainbow chain
• [Vitagliano-Riera-Latorre (10), Ramirez-Rodriguez-Laguna-Sierra (14)]

H = ≠c
†
1/2c1/2 ≠

L≠3/2ÿ

i=1/2

e
≠hi

#
c

†
i ci+1 + c

†
≠ic≠i≠1

$

• Concentric singlet formation

• Volume law entanglement for the half-chain partition:
SA ≥ L.

• In the continuum, CFT on AdS2.
[Rodriguez-Laguna-Dubail-Ramirez-Calabrese-Sierra (16)]

3 / 22



• In this talk, I will develop holographic descriptions

• Of particular interest: the scaling of the entanglement entropy
(at zero and finite T).
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AdS/CFT, AdS3/CFT 2 in particular

• Gravity in bulk AdS … CFT on ˆAdS

• “Radius” R of AdS … central charge c: c = 3R/(2GN )

• BTZ black hole … finite T
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AdS/CFT, AdS3/CFT 2 in particular

• Kinematical: Any stu� determined solely by conformal
symmetry in CFT should have geometric descriptions in AdS.
E.g., entanglement entropy for a single interval

• Dynamical: Einstein gravity in AdS realizes large c CFT.
E.g., operator content, mutual information.
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Di�erent time-evolution ¡ Di�erent foliations

• Key concept and strategy: foliations (slicing)

• (Boundary metric æ Einstein equation æ Bulk geometry)

• Why di�erent coord systems lead to di�erent physics? (Di�eo
invariance?) ≈ CFT is defined on a cuto� surface

7 / 22



Example: Entanglement (Rindler) Hamiltonian

• Rindler coord. (u > 0, ≠Œ < t
Õ
< Œ):

t = u sinh(ht
Õ), x = u cosh(ht

Õ)

• The half of the space(time) is inaccessible
(“traced out”); the state is mixed at finite
Unruh temperature T = h/(2fi).

• Metric:

ds
2
Rindler = ≠u

2
dt

Õ2+du
2 = e

2hx
Õ(≠dt

Õ2+dx
Õ2)

(Tortoise coordinate by u =: h
≠1

e
hx

Õ .) [Figures: Wikipedia]
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Example: Entanglement (Rindler) Hamiltonian

• The Rindler Hamiltonian,

HRindler =
⁄ Œ

0
du u H(u).

• Bulk metric:

ds
2
AdS3 = R

2 dz
2 + dx

2
≠ dt

2

z2

= R
2

z2
#
(≠u

2
dt

Õ2 + du
2) + dz

2$

= R
2

z2

Ë
e

2hxÕ(≠dt
Õ2 + dx

Õ2) + dz
2
È

.

• There are two asymptotic boundaries (hence two CFTs),
which are entangled.

• (The entanglement Hamiltonian of the finite interval can be
discussed similarly.
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Di�erent foliations ¡ Di�erent time-evolution

00 00 00

Flat Rainbow Möbius (SSD)

Bulk metric:

ds
2
AdS3 = R

2 dz
2 + dx

2
≠ dt

2

z2

ds
2
AdS3 =

5
h

2
R

2

cos2(h�)

6 5
d�2 + 1

h2÷2
!
d÷

2
≠ dt

2"6

ds
2
AdS3 = 1

sinh2
u

#
du

2 + dv
2

≠ a
≠2(cosh u ≠ cos v)2

dt
2$
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Di�erent foliations ¡ Di�erent boundary metrics

00 00 00

Flat Rainbow Möbius (SSD)

Slice metric:

ds
2
Mink = dx

2
≠ dt

2

ds
2
AdS2 = 1

h2÷2

1
d÷

2
≠ dt

2
2

ds
2
Mobius = ≠

3
1 ≠ tanh 2“ cos 2fix

L

42
dt

2 + dx
2
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Rainbow slicing

00

ds
2
AdS3 =

5
h

2
R

2

cos2(h�)

6 5
d�2 + 1

h2÷2
!
d÷

2
≠ dt

2"6

• There are two asymptotic boundaries (two CFTs) (similar to
Rindler foliation)

• The two CFTs are connected at (z, x) = 0.
• Previously used, e.g., for AdS/BCFT [Takayanagi(11)
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C.f. Entanglement Hamiltonian and SSD in 2d CFT

• Conformal transformation:

w(z) = log(z + R) ≠ log(z ≠ R)

-2 -1 1 2

-2

-1

1

2

-2 -1 0 1 2

• EE hamiltonian on [≠R, +R] æ Hamiltonian with boundaries
• Transforming from strip to plane:

H =
⁄

du Tvv|v0=fi =
⁄ +R

≠R
dx

(x2
≠ R

2)
2R

Tyy|y=0

E.g., Casini-Huerta-Myers (11), Cardy-Tonni (16)
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C.f. Entanglement Hamiltonian and SSD in 2d CFT

• Evolution in the “orthogonal direction” to the modular flow:
= SSD.

• Evolution operator:

H =
⁄ fi

0
dv Tuu(u0, v) = r

2
0

⁄ 2fi

0
d◊

cos ◊ + cosh u0
sinh u0

Trr(r, ◊)

• In the limit R æ 0,

H ≥
⁄ L

0
ds sin2

1
fis

L

2
Trr

1
L

2fi
,

2fis

L

2
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Möbius foliation of AdS3

00

• t-independent coord. transformation:

u + iv = log(z + ix + a) ≠ log(z + ix ≠ a) aæ0
æ

a

z + ix

• Metric:
ds

2
AdS3 = R

2 dz
2 + dx

2 ≠ dt
2

z2 = R
2

sinh2
u

#
du

2 + dv
2 ≠ a

≠2(cosh u ≠ cos v)2
dt

2$

æ
R

2

u2

#
dv

2 ≠ a
≠2(u2 + v

2)dt
2 + du

2$

The slice metric agrees with the one identified in [Wen-Wu (18)]
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Finite temperature

• Start from the finite T (holographic) EE:

SA(x1, x2; —) = c

3
log

5
—

fi
Ô

‘1
Ô

‘2
sinh

1
fi(x2 ≠ x1)

—

26
.

• Replace ‘1 and ‘2 with appropriate curvilinear cuto�s.

SA(v1, v2; —) = c

3
log

S

U —

fi‘

sinh
!

fi
— (x(u = 0, v2) ≠ x(u = 0, v1))

"
Ò

ˆz(u=0,v1)
ˆu

ˆz(u=0,v2)
ˆu

T

V .

• Good approximation when (length of interval) π T .
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EE for Rainbow chain

• “Defect” entanglement entropy

SA(x; —, ‘) = c

3 log
5

—

fiheh¸
sinh

32fi‘e
h¸

—

46
+ · · · ,
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EE for Rainbow chain

• “Half-chain” entanglement entropy

SA(¸; —, ÷1) = c

3 log
5

—

‘fih÷1eh¸/2 sinh
3

fi÷1(eh¸
≠ 1)

—

46
.
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EE for Möbius evolution

SA(fi ≠ v0, fi + v0; —) = c

3 log
54—

L‘
cos2

1
v0
2

2
sinh

3
L

—
tan

1
v0
2

246
.
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EE for SSD evolution

SA = c

3 log
5

—|v1v2|

2fia‘
sinh

32fia

—

----
v2 ≠ v1

v1v2

----

46
.
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Summary and outlook

• Construction of holographic duals of rainbow chain and SSD.

• Computation of finite T entanglement entropy

Issues:
• Other inhomogenous systems?

• Other quantities, time-dependent setup ...
Negativity and local quench [MacCormack-Kudler-Flam-SR]

• Higher dimensions ?
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Rainbow chain, SPT, BCFT

• Folding rainbow chain æ SPT phase [Nadir Samos Sáenz de Buruaga
et al(18)]

• SPT phases ¡ BCFT [Qi-Katsura-Ludwig (11), Cho-Shiozaki-SR-Ludwig
(16)]

• Rainbow foliation is closely related to BCFT.

[Picture: Cavalcanti et al.(18)] 22 / 22
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Energy-scale deformation

We will consider the spin-1/2 XXZ chain

: scale function : hamiltonian density

: XX chain, free fermion

: interacting

https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0A%5Cmathcal%7BH%7D%3D%5Csum_x%20f(x)%20h(x)%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0A%5Cmathcal%7BH%7D%3D%5Csum_x%20f(x)%20h(x)%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0Af(x)%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0Af(x)%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0Ah(x)%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0Ah(x)%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0Ah(x_j)%3DS%5Ex_j%20S%5Ex_%7Bj%2B1%7D%20%2B%20S%5Ey_j%20S%5Ey_%7Bj%2B1%7D%20%2B%20%5CDelta%20S%5Ez_j%20S%5Ez_%7Bj%2B1%7D%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0Ah(x_j)%3DS%5Ex_j%20S%5Ex_%7Bj%2B1%7D%20%2B%20S%5Ey_j%20S%5Ey_%7Bj%2B1%7D%20%2B%20%5CDelta%20S%5Ez_j%20S%5Ez_%7Bj%2B1%7D%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/#s=%5Cbegin%7Balign*%7D%0A%5CDelta%3D0%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/#s=%5Cbegin%7Balign*%7D%0A%5CDelta%3D0%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/#s=%5Cbegin%7Balign*%7D%0A%5CDelta%5Cne%200%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/#s=%5Cbegin%7Balign*%7D%0A%5CDelta%5Cne%200%0A%5Cend%7Balign*%7D


Uniform XXZ chain

Ground state (low-energy) properties 
of the spin-1/2 XXZ chain in critical region

are well known 
for thermodynamic limit / periodic b.c. / open b.c.

e.g.) for the uniform chain under open b.c.

https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0A%5Cmathcal%7BH%7D%3D%5Csum_j%20h(x_j)%3D%5Csum_j%20%5Cleft(S%5Ex_j%20S%5Ex_%7Bj%2B1%7D%20%2B%20S%5Ey_j%20S%5Ey_%7Bj%2B1%7D%20%2B%20%5CDelta%20S%5Ez_j%20S%5Ez_%7Bj%2B1%7D%5Cright)%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0A%5Cmathcal%7BH%7D%3D%5Csum_j%20h(x_j)%3D%5Csum_j%20%5Cleft(S%5Ex_j%20S%5Ex_%7Bj%2B1%7D%20%2B%20S%5Ey_j%20S%5Ey_%7Bj%2B1%7D%20%2B%20%5CDelta%20S%5Ez_j%20S%5Ez_%7Bj%2B1%7D%5Cright)%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0Ad%5Ea(x_j)%3D%5Clangle%20S%5Ea_j%20S%5Ea_%7Bj%2B1%7D%20%5Crangle%20%3D%20C%5Ea_0%20%2B%20%5Cfrac%7B(-1)%5Ej%20C%5Ea_1%7D%7B%5Bg(x_j)%5D%5E%7B1%2F2%5Ceta%7D%7D%20%2B%20%5Ccdots%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0Ad%5Ea(x_j)%3D%5Clangle%20S%5Ea_j%20S%5Ea_%7Bj%2B1%7D%20%5Crangle%20%3D%20C%5Ea_0%20%2B%20%5Cfrac%7B(-1)%5Ej%20C%5Ea_1%7D%7B%5Bg(x_j)%5D%5E%7B1%2F2%5Ceta%7D%7D%20%2B%20%5Ccdots%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0A%20%20%5Clangle%20S%5Ex_j%20S%5Ex_k%20%5Crangle%20%3DA%5Ex%20(-1)%5E%7Bj-k%7D%20%5Cfrac%7B%5Bg(j)g(k)%5D%5E%7B%5Ceta%2F2%7D%7D%7B%5Bg(%5Cfrac%7Bj-k%7D%7B2%7D)%20g(%5Cfrac%7Bj%2Bk%7D%7B2%7D)%5D%5E%5Ceta%7D%2B%5Ccdots%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0A%20%20%5Clangle%20S%5Ex_j%20S%5Ex_k%20%5Crangle%20%3DA%5Ex%20(-1)%5E%7Bj-k%7D%20%5Cfrac%7B%5Bg(j)g(k)%5D%5E%7B%5Ceta%2F2%7D%7D%7B%5Bg(%5Cfrac%7Bj-k%7D%7B2%7D)%20g(%5Cfrac%7Bj%2Bk%7D%7B2%7D)%5D%5E%5Ceta%7D%2B%5Ccdots%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0Ag(x_j)%3D%5Cfrac%7BL%2B1%7D%7B%5Cpi%7D%5Csin%5Cleft(%5Cfrac%7B%5Cpi%20x_j%7D%7BL%2B1%7D%5Cright)%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0Ag(x_j)%3D%5Cfrac%7BL%2B1%7D%7B%5Cpi%7D%5Csin%5Cleft(%5Cfrac%7B%5Cpi%20x_j%7D%7BL%2B1%7D%5Cright)%0A%5Cend%7Balign*%7D


SSD

Sine-Square Deformation (SSD) Gendiar et al. (2009)

https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0A%5Cmathcal%7BH%7D_%7B%5Crm%20SSD%7D%3D%5Csum_x%20f_%7B%5Crm%20SSD%7D(x)%20h(x)%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0A%5Cmathcal%7BH%7D_%7B%5Crm%20SSD%7D%3D%5Csum_x%20f_%7B%5Crm%20SSD%7D(x)%20h(x)%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0Af_%7B%5Crm%20SSD%7D(x)%20%3D%20%5Csin%5E2%5Cleft(%5Cfrac%7B%5Cpi(x-%5Cfrac%7B1%7D%7B2%7D)%7D%7BL%7D%5Cright)%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0Af_%7B%5Crm%20SSD%7D(x)%20%3D%20%5Csin%5E2%5Cleft(%5Cfrac%7B%5Cpi(x-%5Cfrac%7B1%7D%7B2%7D)%7D%7BL%7D%5Cright)%0A%5Cend%7Balign*%7D


SSD for 1d critical system

1d critical (gapless) systems under SSD

ground state is equivalent with that of periodic system

grand-canonical analysis for magnetization curve

=

conformal mapping to infinite uniform chain

Hotta-Shibata(2011) 

Wen-Ryu-Ludwig (2016)

Hikihara-Nishino (2012)
Katsura (2011), Maruyama et al. (2011)

Hotta-Shibata(2012), Nishimoto et al.(2013) 



Gendiar et al. (2009)Sine-a deformation (SDa)

Sine-a deformation

https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0Af_%7B%7B%5Crm%20SD%7D%5Calpha%7D(x)%20%3D%20%5Csin%5E%5Calpha%5Cleft(%5Cfrac%7B%5Cpi(x-%5Cfrac%7B1%7D%7B2%7D)%7D%7BL%7D%5Cright)%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0Af_%7B%7B%5Crm%20SD%7D%5Calpha%7D(x)%20%3D%20%5Csin%5E%5Calpha%5Cleft(%5Cfrac%7B%5Cpi(x-%5Cfrac%7B1%7D%7B2%7D)%7D%7BL%7D%5Cright)%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0A%5Cmathcal%7BH%7D_%7B%7B%5Crm%20SD%7D%5Calpha%7D%3D%5Csum_x%20f_%7B%7B%5Crm%20SD%7D%5Calpha%7D(x)%20h(x)%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0A%5Cmathcal%7BH%7D_%7B%7B%5Crm%20SD%7D%5Calpha%7D%3D%5Csum_x%20f_%7B%7B%5Crm%20SD%7D%5Calpha%7D(x)%20h(x)%0A%5Cend%7Balign*%7D


Long Distance Entanglement

End-to-end entanglement in 1D quantum systems

Entangle them !!

For realizing Quantum-Information process, 
genelation of large entanglement 

between qubits located at a large distance
and connected by steady channel

is desirable

SSD system realize true Long-Distance Entanglement
How end-to-end entanglement in SDa chain

depends on system size, temperature, …



End-to-end entanglement at T=0

End-to-end concurrence for 
converges a finite value at : true LDE

Concurrence is larger as      is larger
(coupling constants around edges are smaller)

2ta
foN

a

exact value
for 2 a



End-to-end entanglement at finite Temperatures

Critical temperature     is smaller as      is larger
(coupling constants around edges are smaller)

a*T

0.3 a 5.2 1.2 0.2 9.1



Long Distance Entanglement

End-to-end entanglement in 1D quantum systems

Entanglement between them

true LDE realizes for

As a is larger,
end-to-end entanglement at T=0 larger
critical temperature T* smaller (LDE becomes fragile)

https://texclip.marutank.net/#s=%5Cbegin%7Balign*%7D%0A%5Ctextcolor%5Brgb%5D%7B1%2C0%2C0%7D%7B%5Calpha%20%5Cge%202%7D%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/#s=%5Cbegin%7Balign*%7D%0A%5Ctextcolor%5Brgb%5D%7B1%2C0%2C0%7D%7B%5Calpha%20%5Cge%202%7D%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0Af_%7B%7B%5Crm%20SD%7D%5Calpha%7D(x)%20%3D%20%5Csin%5E%5Calpha%5Cleft(%5Cfrac%7B%5Cpi(x-%5Cfrac%7B1%7D%7B2%7D)%7D%7BL%7D%5Cright)%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0Af_%7B%7B%5Crm%20SD%7D%5Calpha%7D(x)%20%3D%20%5Csin%5E%5Calpha%5Cleft(%5Cfrac%7B%5Cpi(x-%5Cfrac%7B1%7D%7B2%7D)%7D%7BL%7D%5Cright)%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0A%5Cmathcal%7BH%7D_%7B%7B%5Crm%20SD%7D%5Calpha%7D%3D%5Csum_x%20f_%7B%7B%5Crm%20SD%7D%5Calpha%7D(x)%20h(x)%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0A%5Cmathcal%7BH%7D_%7B%7B%5Crm%20SD%7D%5Calpha%7D%3D%5Csum_x%20f_%7B%7B%5Crm%20SD%7D%5Calpha%7D(x)%20h(x)%0A%5Cend%7Balign*%7D


Perfect-State Transfer

Energy-scale deformation for Perfect-State Transfer
Christandl et al. (2004)

https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0A%5Cmathcal%7BH%7D_%7B%5Crm%20PST%7D%3D%5Csum_x%20f_%7B%5Crm%20PST%7D(x)%20h(x)%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0A%5Cmathcal%7BH%7D_%7B%5Crm%20PST%7D%3D%5Csum_x%20f_%7B%5Crm%20PST%7D(x)%20h(x)%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0Af_%7B%5Crm%20PST%7D(x)%20%3D%20%5Csqrt%7B%5Cleft(x-%5Cfrac%7B1%7D%7B2%7D%5Cright)%5Cleft(L-x%2B%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%7D%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0Af_%7B%5Crm%20PST%7D(x)%20%3D%20%5Csqrt%7B%5Cleft(x-%5Cfrac%7B1%7D%7B2%7D%5Cright)%5Cleft(L-x%2B%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%7D%0A%5Cend%7Balign*%7D


Perfect-State Transfer

Perfect-State Transfer in XX-spin chain

L-site system in 
one-magnon subspace

Single S = (L-1)/2 spin 
in transverse field

hopping amplitude Clebsch-Gordan coeff.

Quantum-state transfer without loss of fidelity
Constant level spacing of eigenenergies

Christandl et al.
(2004)

https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0A%5Cmathcal%7BH%7D_%7B%5Crm%20PST%7D%20%3D%20%5Csum_%7Bj%3D1%7D%5E%7BL-1%7D%20%5Csqrt%7Bj%20(L-j)%7D%20%5Cleft(S%5Ex_j%20S%5Ex_%7Bj%2B1%7D%2BS%5Ey_j%20S%5Ey_%7Bj%2B1%7D%5Cright)%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0A%5Cmathcal%7BH%7D_%7B%5Crm%20PST%7D%20%3D%20%5Csum_%7Bj%3D1%7D%5E%7BL-1%7D%20%5Csqrt%7Bj%20(L-j)%7D%20%5Cleft(S%5Ex_j%20S%5Ex_%7Bj%2B1%7D%2BS%5Ey_j%20S%5Ey_%7Bj%2B1%7D%5Cright)%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/#s=%5Cbegin%7Balign*%7D%0A%7Cj%5Crangle%20%3D%20S%5E-_j%20%7C%7B%5Crm%20all%7D%5Cuparrow%5Crangle%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/#s=%5Cbegin%7Balign*%7D%0A%7Cj%5Crangle%20%3D%20S%5E-_j%20%7C%7B%5Crm%20all%7D%5Cuparrow%5Crangle%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/#s=%5Cbegin%7Balign*%7D%0A%7CS%5Ez%20%3D%20j%5Crangle%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/#s=%5Cbegin%7Balign*%7D%0A%7CS%5Ez%20%3D%20j%5Crangle%0A%5Cend%7Balign*%7D


Transverse spin correlation in PST system

1 r+1 L

r



CFT from open chain to PST system

Inverse sine mapping

w plane z plane

uniform chain PST chain

leading term in staggered part of 

Wen-Ryu-Ludwig (2016)

https://texclip.marutank.net/#s=%5Cbegin%7Balign*%7D%0A%20%20z%3DR%5Csin%5Comega%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/#s=%5Cbegin%7Balign*%7D%0A%20%20z%3DR%5Csin%5Comega%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/#s=%5Cbegin%7Balign*%7D%0A%20%20-%5Cfrac%7B%5Cpi%7D%7B2%7D%20%3C%20u%20%3C%20%5Cfrac%7B%5Cpi%7D%7B2%7D%2C~~%20v%3D0%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/#s=%5Cbegin%7Balign*%7D%0A%20%20-%5Cfrac%7B%5Cpi%7D%7B2%7D%20%3C%20u%20%3C%20%5Cfrac%7B%5Cpi%7D%7B2%7D%2C~~%20v%3D0%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/#s=%5Cbegin%7Balign*%7D%0A%20%20-R%20%3C%20x%20%3C%20R%2C~~%20y%3D0%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/#s=%5Cbegin%7Balign*%7D%0A%20%20-R%20%3C%20x%20%3C%20R%2C~~%20y%3D0%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0A%20%20%5Cfrac%7BA%5Ex%20(-1)%5E%7Bj-k%7D%7D%7B%7Cx_1-x_2%7C%5E%5Ceta%7D%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0A%20%20%5Cfrac%7BA%5Ex%20(-1)%5E%7Bj-k%7D%7D%7B%7Cx_1-x_2%7C%5E%5Ceta%7D%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0A%20%20%5Cfrac%7BA%5Ex%20(-1)%5E%7Bj-k%7D%5Cleft%5Bg(u_1)g(u_2)%5Cright%5D%5E%7B%5Ceta%2F2%7D%7D%7B%5Bg(%5Cfrac%7Bu_1-u_2%7D%7B2%7D)g(%5Cfrac%7Bu_1%2Bu_2%7D%7B2%7D)%5D%5E%5Ceta%7D%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/s=%5Cbegin%7Balign*%7D%0A%20%20%5Cfrac%7BA%5Ex%20(-1)%5E%7Bj-k%7D%5Cleft%5Bg(u_1)g(u_2)%5Cright%5D%5E%7B%5Ceta%2F2%7D%7D%7B%5Bg(%5Cfrac%7Bu_1-u_2%7D%7B2%7D)g(%5Cfrac%7Bu_1%2Bu_2%7D%7B2%7D)%5D%5E%5Ceta%7D%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/#s=%5Cbegin%7Balign*%7D%0A%20%20%5Clangle%20S%5Ex_j%20S%5Ex_k%20%5Crangle%0A%5Cend%7Balign*%7D
https://texclip.marutank.net/#s=%5Cbegin%7Balign*%7D%0A%20%20%5Clangle%20S%5Ex_j%20S%5Ex_k%20%5Crangle%0A%5Cend%7Balign*%7D
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ࠍᑼߩߎ㧘ࠅ߹᳞ߣ z ߡߒߣ⸂ߩߘ߫ߌ⸂ߡ޿ߟߦ z(ρ) = eρ 㐽ߪ౮௝ߩߎ㧚ࠆࠇࠄᓧ߇

ᒏޟߥ࠻࠶࡜ࡈߩρᐔ㕙ߣޠේὐࠍ puncture zޟߟ߽ߦ ᐔ㕙ߩߣޠኻᔕࠅ޽ߢߩ߽ߩߘ㧘

ࠆ޿ߡߒኻᔕߦ✢ߩೞᤨ╬ߩᒏߪ㧚゠㆏ࠆ޽ߢߩ߽ߚࠇࠄ⍮ߊࠃ (࿑ 6.1)㧚

࿑ 6.2 ρ ᐔ㕙ߣ z ᐔ㕙ߩኻᔕ

ᦨᓟߦ㧘߽߁ዋߒ㕖⥄᣿ߥ଀ߡߒߣ CSFT ߩ 3 ᒏ⋧੕૞↪ࠆߴ⺞ࠍ㧚

଀ 6.3 D = {g|g ∈ C, |g| ≤ 1} 㧘D߈ߣߩߎ㧚ࠆߔߣ ਄ߩ QD ࠍ

φ =
9g

(g3 − 1)2
dg2 (6.13)

ߩߎ㧚ࠆߔ⟵ቯߢ QD ߪ g = 0 ߦ 1 ᰴߩ㔖ὐ㧘g = 1,ω,ω2 ߦ 2 ᰴࠍᭂߩᜬࠆ޿ߡߞ㧚⥄

ὼߥᐳᮡ ρࠍ⠨߈ߣߚ߃㧘g(ρ) ߪᓸಽᣇ⒟ᑼߔߚḩ߇

(
dg

dρ

)2

=
(g3 − 1)2

9g
(6.14)

ߩ߉ߟߪߩ߽ࠆ߃ਈࠍ㆏゠ࠆߥ⇣㧘ߜ߁ߩ⸂ߩᓸಽᣇ⒟ᑼߩߎ㧚ࠆ޽ߢ 3 㧚ࠆ޽ߢߟ

g(ρ) =

{(
1 + ieρ

1 − ieρ

) 2
3

, ω ×
(

1 + ieρ

1 − ieρ

) 2
3

, ω2 ×
(

1 + ieρ

1 − ieρ

) 2
3
}

㧚 (6.15)

㧘wߪ౮௝ߩߎ = eρ 㧘2߫ࠇߔߣ ᑼߩ┨ (2.8) ߚ߃ਈߢ 3 ᒏ⋧੕૞↪ g(1)(w)㧘g(2)(w)㧘
g(3)(w) ࿑ߪ᭽ሶߩ㧚ု⋥゠㆏޿ߥࠄߥ߆߶ߦ 6.3 㧚ࠆߥߦ߁ࠃߩ

D ౮௝ߔ⒖ߦ਄ඨᐔ㕙ࠍ g = (1 + iz)/(1 − iz) ᑼࠍ (6.13) ߩ਄ඨᐔ㕙਄߫ࠇߔ↪ㆡߦ

QD 㧚ࠆࠇࠄᓧ߇

dρ2 =
9(z2 + 1)

z2(z2 − 3)2
dz2㧚 (6.16)

Lm
<latexit sha1_base64="ryoJdR1AQauXbMfbFL+qbwMOW8c="></latexit>
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Figure 1: Equal t contour in z plane.

this choice is compatible with the result of [8]. The contour is plotted in Fig. 1. z ⇤ 1
and z ⇤ �1 corresponds to s ⇤ �1 and s ⇤ 1 respectively. They are remnants of
open string boundaries. They are kept fixed and do not evolve in time. The negative
and positive axes are identified. The global structure of contours are nontrivial. At
t  �2, contour splits into two closed curves within the unit circle |z | ⇤ 1. At t > 0,
two curves are placed outside of the unit circle. Other vaules of t looks a bit different.
The region 0 < t < �2 has only one contour. The contour at t ⇤ 0 is a hyperbola
x

2 � y
2 ⇤ 1. We stress that the global structure of the contours is consistent with the

physical expectation, namely, the theory defines closed string vacuum where open
string endpoint (D-branes) vanish.

3.2 Mode expansion
Next we introduce the mode expansion of conformal fields according to the prescrip-
tion of [18]. Consider a primary field �(z) with weight h. The Fourier mode of this
field is now continuously labeled

� ⇤
º

dz

2⇡i
g(z)h�1

f(z)�(z), (30)

where the integral is performed along a constant t contour according to (28). We also
have the inverse relation

�(z) ⇤ g(z)�h

π
d� f�(z). (31)

These relations correspond to Fourier transformation and its inverse rather than dis-
crete Fourier series. In our case, relevant fundamental fields are @X

µ(z), c(z) and b(z).
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Figure 1: Equal t contour in z plane.

this choice is compatible with the result of [8]. The contour is plotted in Fig. 1. z ⇤ 1
and z ⇤ �1 corresponds to s ⇤ �1 and s ⇤ 1 respectively. They are remnants of
open string boundaries. They are kept fixed and do not evolve in time. The negative
and positive axes are identified. The global structure of contours are nontrivial. At
t  �2, contour splits into two closed curves within the unit circle |z | ⇤ 1. At t > 0,
two curves are placed outside of the unit circle. Other vaules of t looks a bit different.
The region 0 < t < �2 has only one contour. The contour at t ⇤ 0 is a hyperbola
x2 � y2 ⇤ 1. We stress that the global structure of the contours is consistent with the
physical expectation, namely, the theory defines closed string vacuum where open
string endpoint (D-branes) vanish.

3.2 Mode expansion
Next we introduce the mode expansion of conformal fields according to the prescrip-
tion of [18]. Consider a primary field �(z) with weight h. The Fourier mode of this
field is now continuously labeled

� ⇤
º dz

2⇡i
g(z)

h�1 f(z)�(z), (30)

where the integral is performed along a constant t contour according to (28). We also
have the inverse relation

�(z) ⇤ g(z)�h π
d� f�(z). (31)

These relations correspond to Fourier transformation and its inverse rather than dis-
crete Fourier series. In our case, relevant fundamental fields are @Xµ(z), c(z) and b(z).
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is shown that the Virasoro algebra generates global symmetry that commutes with the BRST
charge QB. A finite transformation is derived in section 3. In section 4, we extend a global
symmetry to nontrivial background described by the formal pure gauge solution [12]. We study
explicit examples of the tachyon vacuum, perturvative vacuum (single brane) and two-branes.
We conclude in section 5.

2. Virasoro algebra in K-space

2.1. Construction of Virasoro algebra
Our main concern in this paper is a subspace of string fields spanned by four elements K, B, c
and L. Former three are familiar ones [12] which have been used to construct various analytic
solutions. A less familiar string field L is defined by a left half integral of the energy-momentum
tensor [13, 14]:

L =

Z

C

dz

2⇡i

�
1 + z2

� ⇣
arctan z � ⇡

4

⌘
T (z) |Ii , (2.1)

where |Ii is the identity string field and C is the right half of the unit circle ( z = ei✓, �⇡/2 
✓  ⇡/2) and integral runs counterclockwise. L is nothing but the familiar string field derivation
through the relation

[L, ] =
1

2
(L0 � L†

0) . (2.2)

The derivation property of L is manifest once written in an adjoint representation in the OSFT
algebra (left hand side of (2.2)) since

[L, 1 2] = [L, 1] 2 + 1[L, 2] (2.3)

holds for any string fields  1 and  2. Following Mertes and Schnabl, we extend KBc algebra
to KBcL [14] 1

QBc = cKc, QBK = 0, QBB = K, QBL = 0, (2.4)

cB +Bc = 1, c2 = 0, (2.5)

[L,K] = K, [L,B] = B, [L, c] = �c. (2.6)

Let us proceed construction of Virasoro generators in K-space. As already explained in
introduction, first equation in (2.6) applies to a function of K as

[L, f(K)] = K@f(K), (2.7)

where f(K) is defined by a formal Laurent series

f(K) =
X

m

fmK
m. (2.8)

According to (2.7), L can be regarded as a vector field on K-space. Note that this vector field
can be identified with l0 of Witt algebra on the complex plane by replacing K with z:

l0 = �z@z $ L0 = �K@K . (2.9)
1We do not include B0 of KLBB0c algebra [14] since it will not appear in our analysis.
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tensor [13, 14]:

L =

Z

C

dz

2⇡i

�
1 + z2

� ⇣
arctan z � ⇡

4

⌘
T (z) |Ii , (2.1)

where |Ii is the identity string field and C is the right half of the unit circle ( z = ei✓, �⇡/2 
✓  ⇡/2) and integral runs counterclockwise. L is nothing but the familiar string field derivation
through the relation

[L, ] =
1

2
(L0 � L†

0) . (2.2)

The derivation property of L is manifest once written in an adjoint representation in the OSFT
algebra (left hand side of (2.2)) since

[L, 1 2] = [L, 1] 2 + 1[L, 2] (2.3)

holds for any string fields  1 and  2. Following Mertes and Schnabl, we extend KBc algebra
to KBcL [14] 1

QBc = cKc, QBK = 0, QBB = K, QBL = 0, (2.4)

cB +Bc = 1, c2 = 0, (2.5)

[L,K] = K, [L,B] = B, [L, c] = �c. (2.6)

Let us proceed construction of Virasoro generators in K-space. As already explained in
introduction, first equation in (2.6) applies to a function of K as

[L, f(K)] = K@f(K), (2.7)

where f(K) is defined by a formal Laurent series

f(K) =
X

m

fmK
m. (2.8)

According to (2.7), L can be regarded as a vector field on K-space. Note that this vector field
can be identified with l0 of Witt algebra on the complex plane by replacing K with z:

l0 = �z@z $ L0 = �K@K . (2.9)
1We do not include B0 of KLBB0c algebra [14] since it will not appear in our analysis.

3

It is natural to extend the K-space vector field to nonzero modes by2

Lm = �Km+1@K = �KmL. (2.10)

The last expression of (2.10) defines a “Virasoro generator” in the space of string fields. Us-
ing (2.7), one can derive K-space Virasoro algebra with zero central charge

[Lm,Ln] = (m� n)Lm+n. (2.11)

Here we would like to comment on difference between the string field representation of the
Virasoro algebra introduced by Mertes and Schnabl [14] and ours. A major difference is that
the former is linear with respect to the energy moment tensor frame while the latter is not.
Another difference is that the Mertes-Schnabl algebra is a representation of conformal symmetry
on z̃ plane. On the other hand, our algebra on K-space is not a representation of conformal
symmetry on the worldsheet.

In addition to the Virasoro generators, we introduce an antighost mode by

m = �BKm�1L. (2.12)

Using (2.4) and (2.6), one can derive

QB m = Lm, [Lm, n] = (m� n) m+n, { m, n} = 0, (2.13)

which are exactly identical to the algebra for conformal modes Lm and bm.

2.2. Virasoro algebra as a global symmetry
Next we will show that Lm generates a global symmetry of OSFT. We begin with a general
discussion about a ghost number zero string field J . We require J to be QB closed (i.e.
QBJ = 0). It generates a finite transformation on a string field  :

 g = eJ e�J

=  + [J, ] +
1

2!
[J, [J, ]] + · · ·

(2.14)

where we expand exponentials in second line. We will show that (2.14) defines an exact sym-
metry of OSFT action. For this purpose, the trace notation of the inner product between string
fields is useful. In this notation, OSFT action S[ ] can be written as a sum of traces

S[ ] =
1

2
Tr[ QB ] +

1

3
Tr[ 3]. (2.15)

Using cyclic property of trace and closedness of J , it is straightforward to confirm S[ g] =
S[ ]. This kind of symmetry has been called “global symmetry” in literature according to the
formal correspondence between OSFT and Chern-Simons theory where QB is identified with
the exterior derivative d [15].

Now let us apply above discussion to Virasoro generators by setting J ⇠ Lm. QB-closedness
of Lm is obvious since it is a product of QB-closed fields K and L. Thus any linear combination

2We can introduce another generator with different ordering of K and L by l(p)m = �KpLKm�p, where
0  p  m is an integer. We fix p = m throughout this paper since such choice will not affect our analysis.
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4. Virasoro algebra for nontrivial backgrounds

4.1. Deformed Virasoro generators
We have derived Virasoro algebra as a global symmetry of OSFT described by QB. Let us
extend it to other background described by a deformed BRST charge

Q̂ = QB + G +  G (4.1)

where  G is given by (3.8). We first note how the original global symmetry must be broken
by the shift of a background. It can be shown that any choice of G other than a perturbative
vacuum G = ↵K breaks the global symmetry completely. Therefore, if a global symmetry
exists on a deformed background, it should be described by generators other than Lm.

Here we employ the strategy of the Sine Square Deformation (SSD) based studies [5, 6, 8].
An outlined of the strategy is

1. Define a deformed Hamiltonian

2. Derive an eigenmodes of a Hamiltonian

3. Use obtained eigenmodes to derive Virasoro generators and confirm Virasoro algebra

Let us perform each step following with the strategy. In [5, 6], first step has been carried out
by simply applying the deformed BRST charge to the antighost zero mode. We do same thing
by applying the BRST charge (4.1) to the ghost zero mode 0:

L̂0 = Q̂ 0 (4.2)
= u0 + v0L, (4.3)

here u0 and v0 are L independent string fields. Explicit form of them can be derived from (4.1):

u0 = �K@F

G
BcF � F

G
BcK@F �KF@

✓
1

G

◆
BcF, (4.4)

v0 = � 1

G
� F

G
BcF + FBc

F

G
, (4.5)

where F =
p
1�G.

Second step is identification of eigenmodes of L̂0. We begin with an ansatz for an antighost
eigenmode

ˆ
� = B��L (4.6)

where �� is a function of K with an eigenvalue �. We then solve an eigenvalue equation

[L̂0, ˆ�] = �ˆ�. (4.7)

After a little algebra with (4.7), we obtain a differential equation

�� +K@��

G
= ���. (4.8)

By integrating this equation we find

�� = ���

K
, (4.9)
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Next, finite transformation of B is obtained just by “integrating” (3.3) with respect to QB:

eLvBe�Lv =
f(K)

K
B. (3.4)

Finite transformation of c is somewhat complicated as it is not closed within KBc space. To
see this, we evaluate infinitesimal transformation of c:

[Lv, c] =
v

K
c�

h v

K
, c
i
L. (3.5)

Note that the right hand side involves a term proportional to L . Repeated application of (3.5)
in finite transformation involves higher powers of L. As a result, final expression of the finite
transformation becomes complicated. Therefore we just write it as

eLvce�Lv = eadLv c. (3.6)

Finally, finite transformation of L can be derived by writing L = �L0 and applying finite
transformation law, or writing L = �K/v(K) ·Lv and applying a finite transformation only on
the first factor. In either way one obtain

eLvLe�Lv =
f

K@f
L. (3.7)

Here we would like to apply a global transformation to a formal pure-gauge solution of the
form [12]

 G =
p
1�Gc

K

G
Bc

p
1�G, (3.8)

where G = G(K) is a function of K. Here we quote finite transformations on KBc elements
again

K 0 = f, B0 =
f

K
B, c01 = eadLv c. (3.9)

Applying these to (3.8) yields

 0
G =

p
1�G0c01

f 2

G0Bc01
p
1�G0 (3.10)

where G0(K) = G(K 0). This is an equivalent representation to the original solution (3.8) as long
as a transformation is regular. Values of gauge invariant quantities remain unchanged under
this transformation. Note that a transformed solution does not preserve the original structure
of (3.8) due to the L dependence of c01.

Interestingly, there exists another transformation which preserves the original structure
of (3.8):[18, 19, 20]

K 0 = f, B0 =
f

K
B, c02 = c

K

f
Bc. (3.11)

This has been known as EMNT transformation [18, 19, 20]. One can easily apply (3.11) to the
formal pure gauge solution and confirm that it only affects on G:

 0
G =

p
1�G0c

K

G0Bc
p
1�G0. (3.12)

The transformations of (3.11) are also global since they commute with QB. It also should be
noted that first two transformations of (3.9) and (3.11) are identical. Unfortunately, we have
not yet identified an infinitesimal generator of EMNT transformation within KBcL space.
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where
�(K) = exp

✓Z K

dK 0G(K 0)

K 0

◆
. (4.10)

Here we have chosen an integration constant so that � reduces to m for a trivial choice
G(K) = 1. As a result, an antigost mode turned out to be

ˆ
� = �B

��

K
L. (4.11)

Once an antighost mode is obtained, third step is straightforward. A Virasoro generator is
obtained by operating deformed BRST charge onto it.

L̂� = Q̂ˆ
�

= u� + v�L,
(4.12)

where

u� = ��u0, (4.13)

v� = ���

G
� ��F

G
BcF � FBc

F

G
��. (4.14)

It is obvious that L̂� generates a global symmetry of OSFT defined by Q̂ since it is manifestly
Q̂ exact. Furthermore, we can show that the deformed generators obey Virasoro algebra

[L̂�, L̂�0 ] = (�� �0)L̂�+�0 . (4.15)

One can derive this directly with the expressions (4.12), (4.13), (4.14) and (4.10). Alternatively,
it is rather easier to show

[ˆ�, L̂�0 ] = (�� �0)ˆ�+�0 (4.16)

first and multiply the whole equation by Q̂ to obtain (4.15). We show the derivation of (4.16)
in appendix.

4.2. Examples
As we have seen in previous section, eigenmodes L̂� and �̂ are characterized by a function ��

of (4.10). Let us evaluate this function explicitly for known solutions. Here we consider G(K)
for multibranes [21, 22].

G(K) =

✓
1 +K

K

◆n

, (4.17)

where we restrict n to be n = �1 (the tachyon vacuum), n = 0 (perturvative vacuum or one
brane), n = 1 (two branes) since they are known as consistent solutions that can reproduce ex-
pected values of gauge invariant observables [21, 22] 3. Then explicit form of �� can be obtained

3Solutions for other values of n have been proposed by Hata [2]. Our analysis can be applied to them. We
leave it as a future task.
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by performing integration in (4.10). Fortunately, the integral can be preformed analytically for
all of three examples. The results are

��(K) ⇠

8
><

>:

(1 +K)� for the tachyon vacuum (n = �1)

K� for perturbative vacuum (n = 0)

e�
�
KK� for two-branes (n = 1)

(4.18)

Let us compare these with the z-plane results for identity based solutions. In that setting, a
deformed Virasoro generator is given by

L� =

Z

C+

dz

2⇡i
g(z)f�(z)T (z), (4.19)

where C+ is the upper half of the unit circle and T (z) is the framed version of the twisted
energy momentum tensor [5]. A function f�(z) determines the � dependence of a generator
therefore plays a role analogous to ��(K) . Examples of f�(z) to be compared with our result
are

f�(z) ⇠
(
e

2�
z2�1 for the tachyon vacuum

z� for the perturbative vacuum
(4.20)

We find similarity between the perturbative vacuum results (4.18) and (4.20) as both are �th
power of variables K or z. On the other hand, results for the tachyon vacuum are not quite
same between two frameworks. However, they share similar feature that a potential singularities
around the origin (K = 0 or z = 0) seen in the perturbative vacuum disappear in the tachyon
vacuum. For two-branes we cannot make a comparison between two frameworks since two-brane
solution has not yet been known in the identity based framework.

Next we pay attention to the K-space results (4.18) for one and two branes, with a expectation
that they share similar feature since both have nontrivial cohomologies. Indeed they share
common factor of K�, although two branes exhibits an essential singularity.

In identity based formalism, � dependence of a function f�(z) determines the spectrum [5, 6].
On perturvative vacuum, requirement for single-valuedness of f�(z) restricts � to an integer.
On the other hand, the tachyon vacuum admits non-integer value of �. The requirement for
single valuedness of f�(z) is reasonable since it defines conserved quantities of conformal field
theory on z plane.

On the other hand, we are not quite sure whether the � dependence of �(K)� determines
a spectrum as similar with the z plane analysis. It is merely because we do not know which
conditions should be imposed on a function on K-space. One possible condition will come from
requirement for geometric expression

��(K) =

Z 1

0

dt��(t)e
�tK . (4.21)

where ��(t) is an inverse Laplace transform of ��(K). However, it seems that � need not to
be restricted to an integer on perturbative vacuum. In fact, the inverse Laplace transform
��(t) can be defined for an eigenfunction �� ⇠ K� even for non-integer �. For negative �, the
equation (4.21) can be definitely written

1

K⌫
=

Z 1

0

dt
t⌫

�(⌫)
e�tK , (4.22)

where we set ⌫ = ��. Even for positive �, we could find ��(t) as a distribution rather than
ordinary function.
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ＸＸＺ鎖における格子Unruh効果
と世界線エンタングルメント

新潟大理 奥西巧一, 関孝一

SSD@理研:2019/7/11



Feynman’s blackboard at 1988

Bethe Ansatz Prob
Kondo
2-D Hall
accel temp
Non linear Classical Hydro



Unruh effect 

RL

η

A constantly accelerating observer

sees the vacuum as a thermalized 
state with an effective temp.  
(Unruh temp.)

The Left and right  parts are space like regimes, 
which are classically separable!



Rindler-Fulling quantization 

RL

η

ξ

Minkowski vacuum
with

with

with                       and R

constantly accelerating observer

Bogoliubov transformation



ferro AF/gapfulcritical

Ising-like XXZ chain 

The groundstate is gapful with a finite correlation length.

Bethe ansatz solvable
Bulk energy, excitation gap, magnetization, etc.

But, direct computation of the Bethe wavefunction is not so useful

0 1-1
XXXXY



geometry for EE

-L+1  -L+2  –L+3     …    -1       0       1        2        …..                 L-1      L   

Reservoir System

* This bipartition EE can be easily calculated by DMRG.

If we can write                                  ,  𝐻𝐻𝐸𝐸𝐸𝐸 is called entanglement
Hamiltonian or modular Hamiltonian.

A modular Hamiltonian defines a time evolution in an angular direction 
different from the conventional time.



XXZ chain and 6-vertex model

satisfies Yang-Baxter relation

Commuting transfer matrices

Hamiltonian of the XXZ chain

Simultaneous eigenstate

𝜆𝜆 > 1 Ising-like anisotropy =
antiferroelectric regime

𝑢𝑢 : rapidity(=spectral parameter)



integrability and CTM

Eigenvector: Bethe type Baxter’s magic / CTM

A(λ-u)

A(u)

==

Baxter, J.Math.Phys. (1968), J.Stat.Phys. (1971)

with

The groundstate wavefunction of H can be written as a product of CTMs



Hamiltonian of corner transfer matrix/corner Hamiltonian

Lattice Lorentz boost operator
(Rapidity shift operator)

⇒ The CTM formulation corresponds to the Rindler quantization
of the relativistic quantum field theory

Reduced density matrix

with

plays a role of the entanglement Hamiltonian

H.B.Thacker, Physica D 18, 348 (1986).Lattice Poincare algebra



entanglement/corner Hamiltonian

1        2       3        …..         L-1      L   

Free boundary condition at n=1, L

The boundary effect at n=1 should be perfectly suppressed

The energy scale is proportional to n

Effective temperature decreases as n increases.
(This can be a source of difficulty in a QMC simulation)



WL  QMC

off-diagonal interaction             diagonal interaction
(XY-terms)                                   (zz terms)

The energy scale is proportional to n.        We draw WLs as circles
“classical” entanglement surrounding the entangle point 

Scale imaginary time:  𝜏𝜏 with

a : effective acceleration a=0 : classical limit



snapshots

Density of kinks looks uniform 
in this plot!

For 𝛽𝛽 < 𝛽𝛽𝜆𝜆 (high temp.), kinks 
around the center becomes space.

For 𝛽𝛽 > 𝛽𝛽𝜆𝜆(low temp.), kinks 
around the center are oscillating.

Local temp ∝ 𝑛𝑛𝛽𝛽𝜆𝜆

kink #  ∝ 𝑛𝑛𝛽𝛽𝜆𝜆

How can the “uniform” ground state be realized for the non 
uniform Hamiltonian?



bond energy distribution
normalized 
bond energy normalized kink density

kink density is related to the 
off-diagonal parts of local energy

At 𝛽𝛽 = 𝛽𝛽∗, the normalized bond energy and kink density become 
flat around n=1

reproduces uniform ground state wavefunction.



correlation functions

Perfect correspondence 
to the DMRG results for 
the groundstate of H 



Entanglement Entropy 

We calculate S_EE with integration of a specific heat estimated 
by a QMC simulation. 

The estimation of the entropy is not easy but possible with QMC.

The groundstate entanglement entropy for H can be calculated 
as the thermal entropy for the entanglement Hamiltonian.



Cv
Fitting: Gaussian Kernel method

T* T*



Eneanglement Entropy

Estimation of EE approaches to the exact value of EE for the half0infinite subsystem

0.9747

The deviation from the DMRG result originates from geometry of world sheets:
DMRG: cylinder,   corner Hamiltonian: annuls

0.83025

Δ = 2.0 Δ = 3.0



Unruh-DeWitt detector

A harmonic oscillator coupled with a scalar field 
moving along the Rindler trajectory

The detector is excited by the thermalized vacuum.

Excitation rate is given by an integration of the Wightman function

Capturing the Bose distribution 
with the Unruh temp.

RL

η

(massless case)



XXZ-chain analogue of the detector

A harmonic oscillator coupled with a spin in the XXZ chain

But, the detector does not accelerate in the chain literally .

Scalar field 

η-dependent Lorentz transformation

Spin coupled with the detector :         lattice Lorentz boost 

𝑛𝑛 ~ 𝑟𝑟 :  distance from the entangle point

Autocorrelation function
with respect to 𝜏𝜏



Autocorrelations
DMRG:   Renormalization transformation matrix gives
the relation between the diagonal bases and the usual spin bases

(Minkowski)(Rindler)Bogoliubov trans.

n=1
classical value

periodicity

Imaginary shift 
of the rapidity

+ 
lattice effect



rapidity space and 6-vertex model

a                    b                    c

b/c

a/c

1

1

Critical

F

F

AF

𝜆𝜆 = ∞

𝑢𝑢 = 0

𝑢𝑢 = 𝜆𝜆

Phase diagram

0 < ℜ𝑢𝑢 < 𝜆𝜆 → 2𝜆𝜆

0 < 𝜏𝜏 < 2𝜋𝜋
𝑎𝑎

Imaginary part:  Bethe ansatz

−
𝜋𝜋
𝑎𝑎
< 𝜂𝜂 < 𝜋𝜋

𝑎𝑎

(spectral parameter)



summary/discussions

• We calculate the groundstate properties of the Ising-
like XXZ chain with a finite temperature formulation 
based on the entanglement Hamiltonian/CTM.

• We can understand the entanglement from the 
viewpoint of classical world lines surrounding the 
entangle point

• Can we realize lattice Unruh-Dewitt detector?

• Critical cases?  CFT,   SSD,  numerically bad convergence

Lattice Unruh effect

world-line entanglement

entanglement detector

arXiv:1906.10441



Perspectives 
 from 

 Sine-square deformation 
on  

conformal field theories
Tsukasa TADA 

arXiv:1504.00138
1602.01190
1712.09823
1904.12414



Space ( may have Minkowski metric)

Symmetry Noether current
Energy 

Momentum
Tensor

Time foliation Hamiltonian Path IntegralChoice

Hilbert space
Structure



Symmetry

respect

Conservation of “Energy”

Time foliationChoice

Principle for

guaranteed

Unitarity
Hilbert space

Structure



Symmetry
What

Conformal symmetry

Choice
Classified by  

Casimir invariant



Symmetry
What

Conformal symmetry

accomodates  Space 

Ryu-san’s talk



Three choices

: Virasoro generator

1)

2)

3)

: Hamiltonian



Casimir

In the present study, we examine the case of a particular time development
which was left for further study in Ref. [2]. The time development in question
can be achieved using

L1 + L�1 + L̄1 + L̄�1, (1)

as the time-development operator, instead of L0 + L̄0. The holomorphic part
of Eq. (1), L1 + L�1 has also been investigated in a different context [18] in
which the Hamiltonian was retained as L0 + L̄0. In this study, we change the
Hamiltonian itself to (1), and examine its consequences. In fact, this case turned
out to correspond to the entanglement Hamiltonian as discussed in Ref. [11],
and further explored in Ref. [14, 15], thus providing further motivation for the
present research.

Let us elucidate the significance of the operator (1) in the context of the radial
quantization [19] and the dipolar quantization [1, 2]. As is well-known, the
L0, L1 and L�1 operators constitute sl(2, R) algebra. The combination of these
operators,

x
(0)

L0 + x
(1)

L1 + x
(�1)

L�1, (2)

can be mapped to
x
0(0)

L0 + x
0(1)

L1 + x
0(�1)

L�1, (3)

by the adjoint action of sl(2, R); however, the following quadratic form of the
coefficients, which is known as the quadratic Casimir element, remains the
same 1:

c
(2) ⌘

⇣
x
(0)

⌘2
� 4x

(1)
x
(�1) =

⇣
x
0(0)

⌘2
� 4x

0(1)
x
0(�1), (4)

Using c
(2), the general linear combinations (2) can be classified into three

distinctive classes that are not accessible from each other by the sl(2, R) action.
Each class can be represented by a typical operator up to the overall rescaling:
L0 represents case c

(2) > 0 and L0 � 1
2(L1 + L�1) represents case c

(2) = 0, which
correspond to radial quantization and dipolar quantization, respectively. The
final case, c

(2) < 0, can be represented by L1 + L�1, which signifies the impor-
tance of the operator in question. Below, we investigate the L1 + L�1 operator
by applying the formalism developed in [1, 2] and demonstrate that the three
cases mentioned above, including L1 + L�1, can be studied in a unified manner.

1In this study, the sign convention in the definition of the quadratic Casimir element differs
from that in our previous publications [1, 2, 13]
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Three choices

: Virasoro generator

1)

2)

3)

: Hamiltonian

In the present study, we examine the case of a particular time development
which was left for further study in Ref. [2]. The time development in question
can be achieved using

L1 + L�1 + L̄1 + L̄�1, (1)

as the time-development operator, instead of L0 + L̄0. The holomorphic part
of Eq. (1), L1 + L�1 has also been investigated in a different context [18] in
which the Hamiltonian was retained as L0 + L̄0. In this study, we change the
Hamiltonian itself to (1), and examine its consequences. In fact, this case turned
out to correspond to the entanglement Hamiltonian as discussed in Ref. [11],
and further explored in Ref. [14, 15], thus providing further motivation for the
present research.

Let us elucidate the significance of the operator (1) in the context of the radial
quantization [19] and the dipolar quantization [1, 2]. As is well-known, the
L0, L1 and L�1 operators constitute sl(2, R) algebra. The combination of these
operators,

x
(0)

L0 + x
(1)

L1 + x
(�1)

L�1, (2)

can be mapped to
x
0(0)

L0 + x
0(1)

L1 + x
0(�1)

L�1, (3)

by the adjoint action of sl(2, R); however, the following quadratic form of the
coefficients, which is known as the quadratic Casimir element, remains the
same 1:

c
(2) ⌘

⇣
x
(0)

⌘2
� 4x

(1)
x
(�1) =

⇣
x
0(0)

⌘2
� 4x

0(1)
x
0(�1), (4)

Using c
(2), the general linear combinations (2) can be classified into three

distinctive classes that are not accessible from each other by the sl(2, R) action.
Each class can be represented by a typical operator up to the overall rescaling:
L0 represents case c

(2) > 0 and L0 � 1
2(L1 + L�1) represents case c

(2) = 0, which
correspond to radial quantization and dipolar quantization, respectively. The
final case, c

(2) < 0, can be represented by L1 + L�1, which signifies the impor-
tance of the operator in question. Below, we investigate the L1 + L�1 operator
by applying the formalism developed in [1, 2] and demonstrate that the three
cases mentioned above, including L1 + L�1, can be studied in a unified manner.

1In this study, the sign convention in the definition of the quadratic Casimir element differs
from that in our previous publications [1, 2, 13]
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Evolution operators in conformal field theories and conformal mappings:
Entanglement Hamiltonian, the sine-square deformation, and others
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By making use of conformal mapping, we construct various time-evolution operators in (1+1)-dimensional
conformal field theories (CFTs), which take the form

∫
dx f (x)H(x), where H(x) is the Hamiltonian density

of the CFT and f (x) is an envelope function. Examples of such deformed evolution operators include the
entanglement Hamiltonian and the so-called sine-square deformation of the CFT. Within our construction, the
spectrum and the (finite-size) scaling of the level spacing of the deformed evolution operator are known exactly.
Based on our construction, we also propose a regularized version of the sine-square deformation, which, in
contrast to the original sine-square deformation, has the spectrum of the CFT defined on a spatial circle of finite
circumference L, and for which the level spacing scales as 1/L2, once the circumference of the circle and the
regularization parameter are suitably adjusted.

DOI: 10.1103/PhysRevB.93.235119

I. INTRODUCTION

Many classical statistical mechanical systems and quantum
many-body systems at criticality enjoy conformal invariance—
invariance under scale as well as special conformal trans-
formations. Combined with translations and spatial rotations
(or space-time Lorentz boosts), they are invariant under
the conformal group. That critical systems are conformally
invariant can be exploited to put some constraints on the
operator content of the critical theory. Such constraints are
most restrictive and powerful in 2 or (1+1) dimensions, and
in some cases can fully specify [1] the critical theory [2].

In this work, we consider various kinds of deformations
of (1+1)-dimensional conformal field theories (CFTs). By
“deformation” we mean the following. Let H(x) be the
Hamiltonian density of a CFT where x is the spatial coordinate.
Then, the ordinary time evolution is generated by

H =
∫

dx H(x). (1)

We deform this Hamiltonian by introducing an envelope
function f (x) as

H [f ] =
∫

dx f (x)H(x). (2)

Similarly, suppose we have a lattice model, which is critical
and described by a CFT. Schematically, its Hamiltonian is
given by

H =
∑

i

hi,i+1, (3)

where hi,i+1 is the lattice analog of the Hamiltonian density.
(We have restricted ourselves to the case of nearest-neighbor
interactions, and neglected for simplicity farther-neighbor
interactions. The lattice here can be periodic, infinite, or even
open, but we are interested in the Hamiltonian density.) We
deform this lattice Hamiltonian by introducing an envelope

function f (x) as

H [f ] =
∑

i

f

(
xi + xi+1

2

)
hi,i+1. (4)

There are various problems that fit into the above class of
deformations. For example, let us consider the ground state
|!〉 of a CFT defined on infinite one-dimensional space, and
then define the reduced density matrix ρA associated with a
region x ∈ (−R,R) by ρA = TrB |!〉〈!|, where the partial
trace TrB is taken over the all degrees of freedom associated
with the region outside of the interval (−R,R). Then, the
entanglement Hamiltonian HE , defined by ρA = exp(−HE),
is of the form (2) where the envelope function is

f (x) = R2 − x2

2R
, x ∈ (−R,R), (5)

and f (x) = 0 otherwise [3–7], i.e.,

HE =
∫ R

−R

dx
R2 − x2

2R
H(x). (6)

Another example is the so-called sine-square deformation
(SSD) of quantum many-body Hamiltonians in (1+1) dimen-
sions [8–21]. In the SSD, one chooses the envelope function

f (s) = sin2
(πs

L

)
, for s ∈ (0,L), (7)

and f (s) ≡ 0 outside the interval (0,L). It was discovered that,
for CFTs, the ground state of the SSD Hamiltonian is identical
to the ground state of the CFT defined on an infinite one-
dimensional space. This has practical implications as the SSD
Hamiltonian allows us to study the CFT in the thermodynamic
limit by studying a finite system of length L (in numerical
simulations, say).

Yet another context where such a deformation has been
discussed is the quantum energy inequalities [22]. There are
also various other examples with non-translationally-invariant
interactions. See, for example, Refs. [23,24].

2469-9950/2016/93(23)/235119(11) 235119-1 ©2016 American Physical Society
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TABLE I. Summary of conformal maps and deformed evolution operators discussed in the main text.

Conformal map “Time” “Space” Envelope function Spectrum of H̃

Angular quantization w = ln z v u f (x) = x Continuum
Radial quantization w = ln z u v f (s) = 1

L
Discrete

Entanglement Hamiltonian w = ln (z+R)
(z−R) v u f (x) = (x−R)(x+R)

2R
Discrete

Regularized SSD (rSSD) w = ln (z+R)
(z−R) u v f (s) = cos 2πs

L
+ cosh u0 Discrete

Sine-square deformation (SSD) w = 1
z

u v f (s) = sin2 πs
L

Continuum

Square root deformation (SRD) z = sin w v u f (x) =
√

x2 − R2 Discrete

Obviously, there are infinitely many ways to deform CFTs
in this way. As an attempt to find a systematic and controlled
construction of such deformations, we will make use of
conformal mapping. Our construction can be described as
follows: (i) We start from a reference (1+1)-dimensional
space-time, parametrized by a complex coordinate which is
denoted in the following by w, and an evolution operator H̃ .
(ii) We next pick a suitable conformal map which maps the
reference space-time (coordinate w) to the target space-time,
parametrized by a complex coordinate which we denote in
the following by z. The conformal map maps the set of
trajectories generated by H̃ (determined by the Killing vectors)
in the reference space-time to some (potentially complicated)
trajectories in the complex z plane. (iii) Finally, we transform
H̃ and express it in terms of the energy-momentum tensor
on the complex z plane. If we choose the reference evolution
H̃ to be something simple, by construction, the spectrum of
the deformed Hamiltonian is known exactly, and so is its level
spacing as a function of the parameters on which the conformal
map depends (e.g., the system size). Put differently, in our
construction we deal with the set of envelope functions, which
we can “undo” by choosing a suitable conformal map. See
Table I for various conformal maps and the resulting evolution
operators obtained in this paper.

The construction described above has been used, for
example, to obtain the entanglement Hamiltonian in a number
of cases [6,7,25]. In this paper, by making use of conformal
mapping, we describe various deformations of the CFT with
various envelope functions, and also discuss the finite-size
scaling of their spectra. As a particular example, we obtain a
regularized version of the SSD. The regularized SSD (rSSD)
is closed related to the entanglement Hamiltonian (defined for
a finite interval), in that the entanglement Hamiltonian and
the regularized SSD can be obtained from the same conformal
mapping. However, the direction of the evolutions generated
by them are orthogonal to each other. (In the fluid dynamics
language, the flows generated by these two evolution operators
correspond to the equipotential lines and the streamlines,
respectively.)

As compared to the original SSD, the regularized SSD has
the following properties: The spectrum of the regularized SSD
Hamiltonian matches the spectrum of a CFT with periodic
boundary conditions (PBCs). However, the level spacing of
the regularized SSD Hamiltonian shows (1/length)2 scaling,
as opposed to the familiar (1/length) scaling of a CFT with
PBCs. (To be more precise, the length here means the length
in the complex plane; in the actual Hamiltonian, one needs

to scale simultaneously both the size of the system and the
regularization parameter.)

On the contrary, the spectrum of the original SSD Hamil-
tonian is known to possess a continuous spectrum (in the
continuum limit and at criticality). For this reason, it is rather
subtle to discuss the scaling of the finite-size spectrum of
the SSD Hamiltonian on a lattice. Nevertheless, it has been
shown numerically that the spectrum of the SSD Hamiltonian
on a finite lattice shows (1/length)2 scaling. [Once again, this
should be contrasted with the ordinary (1/length) scaling of
ordinary CFT put on a finite cylinder.] The regularized SSD
does not have such subtle issues. The (1/length)2 scaling of
the regularized SSD may shed some light on the scaling of
the original SSD on a lattice, by taking the limit where the
regularization parameter goes to zero.

By using the same idea, we have also generated other
deformations of CFTs. For example, we obtain the “square
root” deformation (SRD) of CFTs, defined by the envelope
function

f (x) =
√

(R − x)(R + x) (8)

for x ∈ (−R,R) and f (x) = 0 otherwise [see Eq. (59)]. We
will show that the level spacing of the deformed evolution
operator with the envelope function (8) does not depend on R.
A special case of this deformation was previously discussed
in the context of quantum information transport in quantum
spin chains. In particular, so-called “perfect state transfer”
can be achieved in the XX model with inhomogeneous
nearest-neighbor couplings which are modulated according
to the envelope function (8) [26–30].

II. SINGLE VORTEX

We will consider conformal maps from the Euclidean
(“reference”) space-time to another (“target”) space-time. The
target space-time is parametrized by the complex coordinate
(z,z̄), and we write the real and imaginary parts of z as

z = x + iy. (9)

The coordinate of the reference space-time is denoted by
(w,w̄), and we write the real and imaginary parts of w as

w = u + iv. (10)

As a warm-up, we start by illustrating our strategy by taking
the well-known example of radial and angular quantization
of CFTs in the complex plane. Consider the conformal

235119-2
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We can now investigate the effect of selecting Eq. (1) as the time-development
operator of the system using the aforementioned formalism. The choice of g(z)
that corresponds to Eq. (1) should be

g(z) = z
2 + 1. (23)

The time translation on z is then expressed as

� ∂

∂t
= �z

2 ∂

∂z
� ∂

∂z
� z̄

2 ∂

∂z̄
� ∂

∂z̄
. (24)

The relation between the above vector field (24) (or the choice of g(z)) and the
operator (1) can be easily deduced by noting the expression of the Virasoro gen-
erators as follows:

Ln =
1

2pi

I
dzz

n+1
T(z). (25)

z

i

�i

Figure 1: Flow of time t generated by
�
z

2 + 1
�

∂
∂z

+
�
z̄

2 + 1
�

∂
∂z̄

. t = �p/2 (or
p/2) on the solid line between i and �i, and t = 0 on the remainder of the
imaginary axis. The value of t is unavoidably periodic. A line with constant t is
shown in gray.

The selection (23) yields [2]

fk = exp(k
Z

z dz

z2 + 1
)ek·const. =

✓
i + z

i � z

◆� i

2 k

= e
k arctan z, (26)

and, finally,

lk = �(z2 + 1)ek arctan z
∂

∂z
. (27)
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2.2 Generalization

At this point, it would be beneficial to take notice of the fact that the choice
of the specific transformations in (18) was, even though it is in accordance
with the Laurent series and certainly stands as a natural one, completely
arbitrary. Therefore, we would like to reexamine the above procedure by
introducing more general (holomorphic) differential operators than those
in Eq. (19):

lk = �g(z) fk(z)
∂

∂z
, (25)

where g(z) and fk(z) are both holomorphic functions on z, and k is the
index specifies fk(z). In the following, we will see that for certain choices
of g(z), fk(z) and the algebra formed by lk are consistently derived. In
particular, choosing g(z) = z reproduces the above argument lead to the
Witt algebra (the classical Virasoro).

First, let us impose the following relation on fk(z):

l0 fk(z) = �k fk(z). (26)

l0 + l̄0 (27)

As we will see shortly, we can assume

l0 = �g(z)
∂

∂z
, (28)

or
f0(z) = 1, (29)

without inconsistency, hence Eq. (26) reads

g(z)
∂

∂z
fk(z) = k fk(z). (30)

One can readily solve Eq. (30) as

fk(z) = Akek
R z dz

g(z) , (31)

where Ak stands for a k depending constant of integration. Note that the
above expression (31) yields f0(z) = 1 if we take A0 to be unity, which we
do for the rest of the paper.

The commutation relation among lk can be easily derived as

[lk, lk0 ] = (k0 � k)g(z) fk(z) fk0(z)
∂

∂z
, (32)

8

where we utilized Eq. (30) in the following form:

∂

∂z
fk(z) =

k

g(z)
fk(z). (33)

Noting

fk(z) fk0(z) = Ak Ak0e
(k+k0)

R z dz
g =

Ak Ak0

Ak+k0
fk+k0(z) (34)

from Eq. (31), we find the Witt algebra;

[lk, lk0 ] = (k0 � k)lk+k0 , May be a typo (35)

[lk, lk0 ] = (k � k0)lk+k0 , (36)

if we impose Ak Ak0 = Ak+k0 , which is obviously satisfied by

Ak = econst.k. (37)

We have introduced fk(z) simply as a means to define lk, but the action
of lk on fk(z) is of some interest. It is simple to derive

lk fk0(z) = fk(z)l0 fk0(z) = �k0 fk(z) fk0(z) = �k0 fk+k0(z). (38)

The action of lk on fk0(z) alters the eigenvalue of fk0(z) in the amount of
k along with the numerical multiplication of �k0 yielding fk+k0(z). There-
fore, the Witt algebra (36) can be represented over the linear space spanned
by fk(z)’s.

The analysis presented above can be repeated for the other set of dif-
ferential operators characterized by

l̄0 ⌘ �g(z̄)
∂

∂z̄
, (39)

where z̄ stands for the complex conjugate of z. It is, then, apparent fk(z̄)
serves as a basis for the space on which the Witt algebra for l̄k is repre-
sented. Thus, we have constructed two independent set of the Witt algebra
and the representation space.

So far we have not imposed any restriction on the nature of the index
k. It could take either discrete or continuous value. It might be even a
complex number. It turns out that it depends on our choice of g(z). Since
k is the index for the basis that spans the representation space, the consid-
eration of the representation imposes restrictions on k.
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Evaluating the value of CI[k|k0] involves function g. Function g is explicitly
given by Eq. (23) for the case at hand; however, it is useful to consider a more
general case,

g(z) = az
2 + bz + c, (40)

where we assume
b

2 � 4ac < 0 , (41)

to keep the quadratic Casimir element c
(2) negative (see Eq. (4)). We also limit

a to be positive for the sake of notational simplicity. The flow generated by g(z)
in Eq. (40) is illustrated in Fig. 2.

z

L ⌘
p

|b2�4ac|
a

s!•

s!�•

z+

z�

Figure 2: Mapping of time t and space s onto z, generated by g(z) = az
2 + bz +

c ⌘ a(z � z+)(z � z�). Solid lines with arrows represent the flow of t. The gray
line connecting z± is a possible contour, C, where t is constant and s changes; in
particular, s ! ±• near z±, respectively.

The terms inside the braces in the definition of CI (38) can be easily demon-
strated to amount to

g
∂3

g

∂z3 + k

 
2

∂2
g

∂z2 � 1
g

✓
∂g

∂z

◆2
!
+

k3

g
=

1
g(z0)

⇣
�(b2 � 4ac)k + k3

⌘
, (42)

thus yielding

CI[k|k0] =
⇣
�(b2 � 4ac)k + k3

⌘ Z

C

dz

2pi

fk+k0(z)
g(z)

. (43)

A useful formula can be obtained by differentiating Eq. (7):

d fk = k
dz

g(z)
fk, (44)
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Possible constant multiplications are omitted for the sake of brevity.
A notable idiosyncrasy of the solution (26) is the appearance of the multival-

ued function arctan(kz), which may yield ambiguous multiplicative factors

e
pnk

n 2 Z, (28)

without a proper specification of the principal value. The reason for these mul-
tiple values is clear from Fig. 1. With the proper selection of the principal value
for arctan, t = �p

2 at the thick line between z = i and z = �i as illustrated in
Fig. 1. Along the time flow, however, t becomes p

2 after encircling either z = i

or z = �i. As t develops further, it returns to the same point on the z coordinate
with different values for t. To be more precise, the time and space coordinates
can be given by Eq. (22) as follows:

t + is =
Z

z dz

z2 + 1
=

i

2
ln

✓
z + i

z � i

◆
. (29)

If we convert the argument of the logarithm in Eq. (29)to polar coordinates

z + i

z � i
⌘ Re

iq, (30)

it is then simple to discern the time and space coordinates in terms of R and q
as follows:

i

2
ln

✓
z + i

z � i

◆
= �1

2
q +

i

2
ln R = t + is. (31)

3 Conserved charges and the Virasoro algebra
The analysis above produces a set of (conformal) Killing vectors in the following
form:

g(z) fk(z). (32)

We can now define the conserved charges by integrating the Noether current,
which is the product of the energy momentum tensor and the Killing vector:

Lk ⌘
Z

C
dzg(z) fk(z)T(z). (33)

Here, C denotes a contour on which t is constant and s takes all possible values.
An example of such a contour is depicted as a gray line in Fig. 1. The definition
of the anti-holomorphic charge, L̄k, should be trivial. It should be noted that L0
and L̄0 are significant charges among others because

L0 = L1 + L�1, L̄0 = L̄1 + L̄�1, (34)

6
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for the selection of g(z), as in Eq. (23).
The operator product expansion of the energy momentum tensor is gov-

erned by conformal symmetry on the z-plane and takes the following form:

T(z)T(z0) ⇠ cCFT/2
(z � z0)4 +

2T(z0)
(z � z0)2 +

∂z0T(z
0)

z � z0
+ · · · , (35)

where cCFT is the central charge of CFT in question. Then, the commutation rela-
tions among the conserved charges Lk’s lead to the following integration:

[Lk,Lk0 ] =
1

2pi

Z

C
dz

0
g(z0) fk0(z

0)
Z

z
0

z

dz

2pi
g(z) fk(z)T

�
T(z)T(z0)

�

=
1

2pi

Z

C
dz

0
g(z0) fk0(z

0)
Z

z
0

z

dz

2pi
g(z) fk(z) (36)

⇥
✓

cCFT/2
(z � z0)4 +

2T(z0)
(z � z0)2 +

∂z0T(z
0)

z � z0

◆
.

Performing the contour integral around z
0 in Eq. (36) yields

[Lk,Lk0 ] =
cCFT

12

Z

C

dz
0

2pi

(
g

∂3
g

∂z03
+ k

 
2

∂2
g

∂z02
� 1

g

✓
∂g

∂z0

◆2
!
+

k3

g

)
fk+k0(z

0)

+(k � k0)
Z

C

dz
0

2pi
g(z0) fk+k0(z

0)T(z0), (37)

where the last term of the righthand side is nothing but

(k � k0)Lk+k0 .

If we denote the integral part of the central extension in the first term of the
righthand side of Eq. (37) as

CI[k|k0] ⌘
Z

C

dz

2pi

(
g

∂3
g

∂z3 + k

 
2

∂2
g

∂z2 � 1
g

✓
∂g

∂z

◆2
!
+

k3

g

)
fk+k0(z), (38)

the commutation relations read

[Lk,Lk0 ] = (k � k0)Lk+k0 +
cCFT

12
CI[k|k0]. (39)

For the charges, Lk, to satisfy the Virasoro algebra in Eq. (39), CI[k|k0] must van-
ish unless k + k0 = 0. Otherwise, a certain part of the Jacobi identity is breached
(see, for example, [20]). In the following, we evaluate CI[k|k0] explicitly to verify
whether CI[k|k0] can be zero for k + k0 6= 0.
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For the charges, Lk, to satisfy the Virasoro algebra in Eq. (39), CI[k|k0] must van-
ish unless k + k0 = 0. Otherwise, a certain part of the Jacobi identity is breached
(see, for example, [20]). In the following, we evaluate CI[k|k0] explicitly to verify
whether CI[k|k0] can be zero for k + k0 6= 0.
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Evaluating the value of CI[k|k0] involves function g. Function g is explicitly
given by Eq. (23) for the case at hand; however, it is useful to consider a more
general case,
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where we assume
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2 � 4ac < 0 , (41)

to keep the quadratic Casimir element c
(2) negative (see Eq. (4)). We also limit

a to be positive for the sake of notational simplicity. The flow generated by g(z)
in Eq. (40) is illustrated in Fig. 2.
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where the last term of the righthand side is nothing but
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the commutation relations read

[Lk,Lk0 ] = (k � k0)Lk+k0 +
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For the charges, Lk, to satisfy the Virasoro algebra in Eq. (39), CI[k|k0] must van-
ish unless k + k0 = 0. Otherwise, a certain part of the Jacobi identity is breached
(see, for example, [20]). In the following, we evaluate CI[k|k0] explicitly to verify
whether CI[k|k0] can be zero for k + k0 6= 0.
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Evaluating the value of CI[k|k0] involves function g. Function g is explicitly
given by Eq. (23) for the case at hand; however, it is useful to consider a more
general case,

g(z) = az
2 + bz + c, (40)

where we assume
b

2 � 4ac < 0 , (41)

to keep the quadratic Casimir element c
(2) negative (see Eq. (4)). We also limit

a to be positive for the sake of notational simplicity. The flow generated by g(z)
in Eq. (40) is illustrated in Fig. 2.
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Figure 2: Mapping of time t and space s onto z, generated by g(z) = az
2 + bz +

c ⌘ a(z � z+)(z � z�). Solid lines with arrows represent the flow of t. The gray
line connecting z± is a possible contour, C, where t is constant and s changes; in
particular, s ! ±• near z±, respectively.
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which further simplifies the integral in Eq. (43) as
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for k + k0 6= 0. If we denote two roots of g(z) = 0 as z±, whose imaginary parts
are positive and negative, respectively, they constitute the boundary of C. Thus,

fk+k0

2pi(k + k0)
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To evaluate fk+k0 at z±, expression (26) must be generalized as follows:
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,

(47)
where possible multiplicative constants are neglected.

It is apparent that fk+k0(z+) and fk+k0(z�) are divergent; as a result, the eval-
uation of Eq. (46) is non-trivial. Therefore, we introduce the cut-off, #, near the
fixed points z = z±, bearing in mind the application to entanglement entropy
(Fig. 3).
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Figure 3: Cut-off region near z+ (Colored in gray). The radius of the cut-off is #
in the z plane.

The structure near z± in terms of t and s can be determined from the follow-
ing generalization of Eq. (29):

t + is =
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z dz

az2 + bz + c
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a(z+ � z�)
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z � z+
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. (48)

Introducing L as the length of the separation between z+ and z� in the imagi-
nary direction,

z+ � z� = i

p
|b2 � 4ac|

a
⌘ iL, (49)
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the commutation relations read

[Lk,Lk0 ] = (k � k0)Lk+k0 +
cCFT

12
CI[k|k0]. (39)

For the charges, Lk, to satisfy the Virasoro algebra in Eq. (39), CI[k|k0] must van-
ish unless k + k0 = 0. Otherwise, a certain part of the Jacobi identity is breached
(see, for example, [20]). In the following, we evaluate CI[k|k0] explicitly to verify
whether CI[k|k0] can be zero for k + k0 6= 0.
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for k + k0 6= 0. If we denote two roots of g(z) = 0 as z±, whose imaginary parts
are positive and negative, respectively, they constitute the boundary of C. Thus,
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where possible multiplicative constants are neglected.

It is apparent that fk+k0(z+) and fk+k0(z�) are divergent; as a result, the eval-
uation of Eq. (46) is non-trivial. Therefore, we introduce the cut-off, #, near the
fixed points z = z±, bearing in mind the application to entanglement entropy
(Fig. 3).
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Introducing L as the length of the separation between z+ and z� in the imagi-
nary direction,

z+ � z� = i
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⌘ iL, (49)
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for the selection of g(z), as in Eq. (23).
The operator product expansion of the energy momentum tensor is gov-

erned by conformal symmetry on the z-plane and takes the following form:
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where cCFT is the central charge of CFT in question. Then, the commutation rela-
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where the last term of the righthand side is nothing but

(k � k0)Lk+k0 .

If we denote the integral part of the central extension in the first term of the
righthand side of Eq. (37) as
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the commutation relations read

[Lk,Lk0 ] = (k � k0)Lk+k0 +
cCFT
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CI[k|k0]. (39)

For the charges, Lk, to satisfy the Virasoro algebra in Eq. (39), CI[k|k0] must van-
ish unless k + k0 = 0. Otherwise, a certain part of the Jacobi identity is breached
(see, for example, [20]). In the following, we evaluate CI[k|k0] explicitly to verify
whether CI[k|k0] can be zero for k + k0 6= 0.
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for k + k0 6= 0. If we denote two roots of g(z) = 0 as z±, whose imaginary parts
are positive and negative, respectively, they constitute the boundary of C. Thus,
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where possible multiplicative constants are neglected.

It is apparent that fk+k0(z+) and fk+k0(z�) are divergent; as a result, the eval-
uation of Eq. (46) is non-trivial. Therefore, we introduce the cut-off, #, near the
fixed points z = z±, bearing in mind the application to entanglement entropy
(Fig. 3).
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Cut-off

Evaluating the value of CI[k|k0] involves function g. Function g is explicitly
given by Eq. (23) for the case at hand; however, it is useful to consider a more
general case,

g(z) = az
2 + bz + c, (40)

where we assume
b

2 � 4ac < 0 , (41)

to keep the quadratic Casimir element c
(2) negative (see Eq. (4)). We also limit

a to be positive for the sake of notational simplicity. The flow generated by g(z)
in Eq. (40) is illustrated in Fig. 2.

z

L ⌘
p

|b2�4ac|
a

s!•

s!�•

z+

z�

Figure 2: Mapping of time t and space s onto z, generated by g(z) = az
2 + bz +

c ⌘ a(z � z+)(z � z�). Solid lines with arrows represent the flow of t. The gray
line connecting z± is a possible contour, C, where t is constant and s changes; in
particular, s ! ±• near z±, respectively.

The terms inside the braces in the definition of CI (38) can be easily demon-
strated to amount to

g
∂3

g

∂z3 + k

 
2

∂2
g

∂z2 � 1
g

✓
∂g

∂z

◆2
!
+

k3

g
=

1
g(z0)

⇣
�(b2 � 4ac)k + k3

⌘
, (42)

thus yielding

CI[k|k0] =
⇣
�(b2 � 4ac)k + k3

⌘ Z

C

dz

2pi

fk+k0(z)
g(z)

. (43)

A useful formula can be obtained by differentiating Eq. (7):

d fk = k
dz

g(z)
fk, (44)
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for the selection of g(z), as in Eq. (23).
The operator product expansion of the energy momentum tensor is gov-

erned by conformal symmetry on the z-plane and takes the following form:

T(z)T(z0) ⇠ cCFT/2
(z � z0)4 +

2T(z0)
(z � z0)2 +

∂z0T(z
0)

z � z0
+ · · · , (35)

where cCFT is the central charge of CFT in question. Then, the commutation rela-
tions among the conserved charges Lk’s lead to the following integration:
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dz
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◆
.

Performing the contour integral around z
0 in Eq. (36) yields

[Lk,Lk0 ] =
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0

2pi
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0)T(z0), (37)

where the last term of the righthand side is nothing but

(k � k0)Lk+k0 .

If we denote the integral part of the central extension in the first term of the
righthand side of Eq. (37) as

CI[k|k0] ⌘
Z
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dz

2pi

(
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fk+k0(z), (38)

the commutation relations read

[Lk,Lk0 ] = (k � k0)Lk+k0 +
cCFT

12
CI[k|k0]. (39)

For the charges, Lk, to satisfy the Virasoro algebra in Eq. (39), CI[k|k0] must van-
ish unless k + k0 = 0. Otherwise, a certain part of the Jacobi identity is breached
(see, for example, [20]). In the following, we evaluate CI[k|k0] explicitly to verify
whether CI[k|k0] can be zero for k + k0 6= 0.
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# )
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ln( L

# )

� p
aL

p
aL

z=z+
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Figure 4: Time translation in s � t coordinates. The cut-off is represented by the
dashed line adjacent to the gray-colored area, where the fixed points, z+ or z�
in the z-plane, are located infinitely far away. The circles with radius # in the
z-plane, and the cut-off in the s coordinate is located at s = ± 1

aL
ln( L

# ).

and setting z as the cut-off boundary z = z± + #e
iq in the above equation, we

obtain
t + is ⇠

±q � p
2

aL
± i

1
aL

· ln
✓

L

#

◆
at z ⇠ z± and # ⇠ 0. (50)

Thus, in terms of t and s, the cut-off boundaries exist at

z = z± + e
⌥aLs

e
±i(aLt+p/2), (51)

respectively; Fig. 4 provides a depiction. Equation (46) can then be evaluated
using the cut-off, and the expression of CI[k|k0] for k + k0 6= 0 can be obtained
as follows:

CI[k|k0] =
⇣
�(b2 � 4ac)k + k3
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◆◆�
. (52)

Finally, we uncover that there should be an integer n so that

2i
k + k0
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#

◆
= 2pin, (53)
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which further simplifies the integral in Eq. (43) as
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for k + k0 6= 0. If we denote two roots of g(z) = 0 as z±, whose imaginary parts
are positive and negative, respectively, they constitute the boundary of C. Thus,
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To evaluate fk+k0 at z±, expression (26) must be generalized as follows:
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where possible multiplicative constants are neglected.

It is apparent that fk+k0(z+) and fk+k0(z�) are divergent; as a result, the eval-
uation of Eq. (46) is non-trivial. Therefore, we introduce the cut-off, #, near the
fixed points z = z±, bearing in mind the application to entanglement entropy
(Fig. 3).

#
z+

s!
•

Figure 3: Cut-off region near z+ (Colored in gray). The radius of the cut-off is #
in the z plane.

The structure near z± in terms of t and s can be determined from the follow-
ing generalization of Eq. (29):

t + is =
Z

z dz

az2 + bz + c
=

1
a(z+ � z�)

ln
✓

z � z+

z � z�

◆
. (48)

Introducing L as the length of the separation between z+ and z� in the imagi-
nary direction,

z+ � z� = i

p
|b2 � 4ac|

a
⌘ iL, (49)

9



Cut-off

for the selection of g(z), as in Eq. (23).
The operator product expansion of the energy momentum tensor is gov-

erned by conformal symmetry on the z-plane and takes the following form:

T(z)T(z0) ⇠ cCFT/2
(z � z0)4 +

2T(z0)
(z � z0)2 +

∂z0T(z
0)

z � z0
+ · · · , (35)

where cCFT is the central charge of CFT in question. Then, the commutation rela-
tions among the conserved charges Lk’s lead to the following integration:

[Lk,Lk0 ] =
1

2pi

Z

C
dz

0
g(z0) fk0(z

0)
Z

z
0

z

dz

2pi
g(z) fk(z)T

�
T(z)T(z0)

�

=
1

2pi

Z

C
dz

0
g(z0) fk0(z

0)
Z

z
0

z

dz

2pi
g(z) fk(z) (36)

⇥
✓

cCFT/2
(z � z0)4 +

2T(z0)
(z � z0)2 +

∂z0T(z
0)

z � z0

◆
.

Performing the contour integral around z
0 in Eq. (36) yields

[Lk,Lk0 ] =
cCFT

12

Z

C

dz
0

2pi

(
g

∂3
g

∂z03
+ k

 
2

∂2
g

∂z02
� 1

g

✓
∂g

∂z0

◆2
!
+

k3

g

)
fk+k0(z

0)

+(k � k0)
Z

C

dz
0

2pi
g(z0) fk+k0(z

0)T(z0), (37)

where the last term of the righthand side is nothing but

(k � k0)Lk+k0 .

If we denote the integral part of the central extension in the first term of the
righthand side of Eq. (37) as

CI[k|k0] ⌘
Z

C

dz

2pi

(
g

∂3
g

∂z3 + k

 
2

∂2
g

∂z2 � 1
g

✓
∂g

∂z

◆2
!
+

k3

g

)
fk+k0(z), (38)

the commutation relations read

[Lk,Lk0 ] = (k � k0)Lk+k0 +
cCFT

12
CI[k|k0]. (39)

For the charges, Lk, to satisfy the Virasoro algebra in Eq. (39), CI[k|k0] must van-
ish unless k + k0 = 0. Otherwise, a certain part of the Jacobi identity is breached
(see, for example, [20]). In the following, we evaluate CI[k|k0] explicitly to verify
whether CI[k|k0] can be zero for k + k0 6= 0.

7

s

t

1
aL

ln( L

# )
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ln( L

# )

� p
aL

p
aL

z=z+

z=z�

Figure 4: Time translation in s � t coordinates. The cut-off is represented by the
dashed line adjacent to the gray-colored area, where the fixed points, z+ or z�
in the z-plane, are located infinitely far away. The circles with radius # in the
z-plane, and the cut-off in the s coordinate is located at s = ± 1

aL
ln( L

# ).

and setting z as the cut-off boundary z = z± + #e
iq in the above equation, we

obtain
t + is ⇠

±q � p
2

aL
± i

1
aL

· ln
✓

L

#

◆
at z ⇠ z± and # ⇠ 0. (50)

Thus, in terms of t and s, the cut-off boundaries exist at

z = z± + e
⌥aLs

e
±i(aLt+p/2), (51)

respectively; Fig. 4 provides a depiction. Equation (46) can then be evaluated
using the cut-off, and the expression of CI[k|k0] for k + k0 6= 0 can be obtained
as follows:

CI[k|k0] =
⇣
�(b2 � 4ac)k + k3

⌘
e

k+k0
aL (q�p

2 )

2pi(k + k0)

⇥


exp
✓

i
k + k0

aL
ln

✓
L

#

◆◆
� exp

✓
�i

k + k0

aL
ln

✓
L

#

◆◆�
. (52)

Finally, we uncover that there should be an integer n so that

2i
k + k0

aL
ln

✓
L

#

◆
= 2pin, (53)
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in the z-plane, are located infinitely far away. The circles with radius # in the
z-plane, and the cut-off in the s coordinate is located at s = ± 1

aL
ln( L

# ).

and setting z as the cut-off boundary z = z± + #e
iq in the above equation, we

obtain
t + is ⇠

±q � p
2

aL
± i

1
aL

· ln
✓

L

#

◆
at z ⇠ z± and # ⇠ 0. (50)

Thus, in terms of t and s, the cut-off boundaries exist at

z = z± + e
⌥aLs

e
±i(aLt+p/2), (51)

respectively; Fig. 4 provides a depiction. Equation (46) can then be evaluated
using the cut-off, and the expression of CI[k|k0] for k + k0 6= 0 can be obtained
as follows:

CI[k|k0] =
⇣
�(b2 � 4ac)k + k3

⌘
e

k+k0
aL (q�p

2 )

2pi(k + k0)

⇥


exp
✓

i
k + k0

aL
ln

✓
L

#

◆◆
� exp

✓
�i

k + k0

aL
ln

✓
L

#

◆◆�
. (52)

Finally, we uncover that there should be an integer n so that

2i
k + k0

aL
ln

✓
L

#

◆
= 2pin, (53)
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for Eq. (52) to vanish.
We could require that k, which was originally introduced as the label for the

(differential) operator, takes the following values:

k =
paL

ln (L/#)
n, n 2 Z or Z +

1
2

. (54)

However, we rather homogeneously rescale the parameters a, b, c in g(z), which
governs the time development,

a ! xa, b ! xb, c ! xc, i.e. g(z) ! xg(z), (55)

and demand
paL

ln (L/#)
= 1 (56)

so that k can be either an integer or half-integer. Noting that L is invariant under
the rescaling (55), it is evident that selecting x as

x =
ln

�
L

#

�

apL
(57)

satisfies Eq. (56).
The rescaling (55) also affects the range of t and s as

� p < s < p, � p2

ln
�

L

#

� < t <
p2

ln
�

L

#

� . (58)

Thus, there is now a torus to be integrated over with the moduli parameter

t = i
p

ln (L/#)
, (59)

as depicted in Fig. 5.
The introduction of cut-off # and the corresponding rescaling of g(z) elimi-

nate the undesirable contribution to CI[k|k0] for k 6= �k0. However, the case for
k = �k0 yields

CI[k|� k] =
⇣

k3 � (b2 � 4ac)k
⌘ Z

C"

dz

2pi

1
g(z)

, (60)

by invoking Eqs. (7) and (43). Here we denote the contour with the cut-off as
C#. The above expression can be further evaluated as

CI[k|� k] =
⇣

k3 � (b2 � 4ac)k
⌘ ln L

# +
ip
2

apL
. (61)
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z-plane, and the cut-off in the s coordinate is located at s = ± 1

aL
ln( L

# ).

and setting z as the cut-off boundary z = z± + #e
iq in the above equation, we

obtain
t + is ⇠

±q � p
2

aL
± i

1
aL

· ln
✓

L

#

◆
at z ⇠ z± and # ⇠ 0. (50)

Thus, in terms of t and s, the cut-off boundaries exist at

z = z± + e
⌥aLs

e
±i(aLt+p/2), (51)

respectively; Fig. 4 provides a depiction. Equation (46) can then be evaluated
using the cut-off, and the expression of CI[k|k0] for k + k0 6= 0 can be obtained
as follows:

CI[k|k0] =
⇣
�(b2 � 4ac)k + k3

⌘
e
(k+k0)t

2pi(k + k0)

⇥


exp
✓

i
k + k0

aL
ln

✓
L

#

◆◆
� exp

✓
�i

k + k0

aL
ln

✓
L

#

◆◆�
. (52)

CI[k|k0] =
⇣
�(b2 � 4ac)k + k3

⌘
e

k+k0
aL (q�p

2 )

2pi(k + k0)

⇥


exp
✓

i
k + k0

aL
ln

✓
L

#

◆◆
� exp

✓
�i

k + k0

aL
ln

✓
L

#

◆◆�
. (53)
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for the selection of g(z), as in Eq. (23).
The operator product expansion of the energy momentum tensor is gov-

erned by conformal symmetry on the z-plane and takes the following form:

T(z)T(z0) ⇠ cCFT/2
(z � z0)4 +

2T(z0)
(z � z0)2 +

∂z0T(z
0)

z � z0
+ · · · , (35)

where cCFT is the central charge of CFT in question. Then, the commutation rela-
tions among the conserved charges Lk’s lead to the following integration:

[Lk,Lk0 ] =
1

2pi

Z

C
dz

0
g(z0) fk0(z

0)
Z

z
0

z

dz

2pi
g(z) fk(z)T

�
T(z)T(z0)

�

=
1

2pi

Z

C
dz

0
g(z0) fk0(z

0)
Z

z
0

z

dz

2pi
g(z) fk(z) (36)

⇥
✓

cCFT/2
(z � z0)4 +

2T(z0)
(z � z0)2 +

∂z0T(z
0)

z � z0

◆
.

Performing the contour integral around z
0 in Eq. (36) yields

[Lk,Lk0 ] =
cCFT

12

Z

C

dz
0

2pi

(
g

∂3
g

∂z03
+ k

 
2

∂2
g

∂z02
� 1

g

✓
∂g

∂z0

◆2
!
+

k3

g

)
fk+k0(z

0)

+(k � k0)
Z

C

dz
0

2pi
g(z0) fk+k0(z

0)T(z0), (37)

where the last term of the righthand side is nothing but

(k � k0)Lk+k0 .

If we denote the integral part of the central extension in the first term of the
righthand side of Eq. (37) as

CI[k|k0] ⌘
Z

C

dz

2pi

(
g

∂3
g

∂z3 + k

 
2

∂2
g

∂z2 � 1
g

✓
∂g

∂z

◆2
!
+

k3

g

)
fk+k0(z), (38)

the commutation relations read

[Lk,Lk0 ] = (k � k0)Lk+k0 +
cCFT

12
CI[k|k0]. (39)

For the charges, Lk, to satisfy the Virasoro algebra in Eq. (39), CI[k|k0] must van-
ish unless k + k0 = 0. Otherwise, a certain part of the Jacobi identity is breached
(see, for example, [20]). In the following, we evaluate CI[k|k0] explicitly to verify
whether CI[k|k0] can be zero for k + k0 6= 0.
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Figure 4: Time translation in s � t coordinates. The cut-off is represented by the
dashed line adjacent to the gray-colored area, where the fixed points, z+ or z�
in the z-plane, are located infinitely far away. The circles with radius # in the
z-plane, and the cut-off in the s coordinate is located at s = ± 1

aL
ln( L

# ).

and setting z as the cut-off boundary z = z± + #e
iq in the above equation, we

obtain
t + is ⇠

±q � p
2

aL
± i

1
aL

· ln
✓

L

#

◆
at z ⇠ z± and # ⇠ 0. (50)

Thus, in terms of t and s, the cut-off boundaries exist at

z = z± + e
⌥aLs

e
±i(aLt+p/2), (51)

respectively; Fig. 4 provides a depiction. Equation (46) can then be evaluated
using the cut-off, and the expression of CI[k|k0] for k + k0 6= 0 can be obtained
as follows:

CI[k|k0] =
⇣
�(b2 � 4ac)k + k3

⌘
e

k+k0
aL (q�p

2 )

2pi(k + k0)

⇥


exp
✓

i
k + k0

aL
ln

✓
L

#

◆◆
� exp

✓
�i

k + k0

aL
ln

✓
L

#

◆◆�
. (52)

Finally, we uncover that there should be an integer n so that

2i
k + k0

aL
ln

✓
L

#

◆
= 2pin, (53)
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aL
ln( L

# ).

and setting z as the cut-off boundary z = z± + #e
iq in the above equation, we

obtain
t + is ⇠

±q � p
2

aL
± i

1
aL

· ln
✓

L

#

◆
at z ⇠ z± and # ⇠ 0. (50)

Thus, in terms of t and s, the cut-off boundaries exist at

z = z± + e
⌥aLs

e
±i(aLt+p/2), (51)

respectively; Fig. 4 provides a depiction. Equation (46) can then be evaluated
using the cut-off, and the expression of CI[k|k0] for k + k0 6= 0 can be obtained
as follows:

CI[k|k0] =
⇣
�(b2 � 4ac)k + k3

⌘
e

k+k0
aL (q�p

2 )

2pi(k + k0)

⇥


exp
✓

i
k + k0

aL
ln

✓
L

#

◆◆
� exp

✓
�i

k + k0

aL
ln

✓
L

#

◆◆�
. (52)

Finally, we uncover that there should be an integer n so that

2i
k + k0

aL
ln

✓
L

#

◆
= 2pin, (53)
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for Eq. (52) to vanish.
We could require that k, which was originally introduced as the label for the

(differential) operator, takes the following values:

k =
paL

ln (L/#)
n, n 2 Z or Z +

1
2

. (54)

However, we rather homogeneously rescale the parameters a, b, c in g(z), which
governs the time development,

a ! xa, b ! xb, c ! xc, i.e. g(z) ! xg(z), (55)

and demand
paL

ln (L/#)
= 1 (56)

so that k can be either an integer or half-integer. Noting that L is invariant under
the rescaling (55), it is evident that selecting x as

x =
ln

�
L

#

�

apL
(57)

satisfies Eq. (56).
The rescaling (55) also affects the range of t and s as

� p < s < p, � p2

ln
�

L

#

� < t <
p2

ln
�

L

#

� . (58)

Thus, there is now a torus to be integrated over with the moduli parameter

t = i
p

ln (L/#)
, (59)

as depicted in Fig. 5.
The introduction of cut-off # and the corresponding rescaling of g(z) elimi-

nate the undesirable contribution to CI[k|k0] for k 6= �k0. However, the case for
k = �k0 yields

CI[k|� k] =
⇣

k3 � (b2 � 4ac)k
⌘ Z

C"

dz

2pi

1
g(z)

, (60)

by invoking Eqs. (7) and (43). Here we denote the contour with the cut-off as
C#. The above expression can be further evaluated as

CI[k|� k] =
⇣

k3 � (b2 � 4ac)k
⌘ ln L

# +
ip
2

apL
. (61)

11

Evaluating the value of CI[k|k0] involves function g. Function g is explicitly
given by Eq. (23) for the case at hand; however, it is useful to consider a more
general case,

g(z) = az
2 + bz + c, (40)

where we assume
b

2 � 4ac < 0 , (41)

to keep the quadratic Casimir element c
(2) negative (see Eq. (4)). We also limit

a to be positive for the sake of notational simplicity. The flow generated by g(z)
in Eq. (40) is illustrated in Fig. 2.

z

L ⌘
p

|b2�4ac|
a

s!•

s!�•

z+

z�

Figure 2: Mapping of time t and space s onto z, generated by g(z) = az
2 + bz +

c ⌘ a(z � z+)(z � z�). Solid lines with arrows represent the flow of t. The gray
line connecting z± is a possible contour, C, where t is constant and s changes; in
particular, s ! ±• near z±, respectively.

The terms inside the braces in the definition of CI (38) can be easily demon-
strated to amount to

g
∂3

g

∂z3 + k

 
2

∂2
g

∂z2 � 1
g

✓
∂g

∂z

◆2
!
+

k3

g
=

1
g(z0)

⇣
�(b2 � 4ac)k + k3

⌘
, (42)

thus yielding

CI[k|k0] =
⇣
�(b2 � 4ac)k + k3

⌘ Z

C

dz

2pi

fk+k0(z)
g(z)

. (43)

A useful formula can be obtained by differentiating Eq. (7):

d fk = k
dz

g(z)
fk, (44)
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In terms of , identical

Torus geometry

which further simplifies the integral in Eq. (43) as
Z

C

dz

2pi

fk+k0(z)
g(z)

=
Z

C

d fk+k0

2pi(k + k0)
=

fk+k0

2pi(k + k0)

����
∂C

, (45)

for k + k0 6= 0. If we denote two roots of g(z) = 0 as z±, whose imaginary parts
are positive and negative, respectively, they constitute the boundary of C. Thus,

fk+k0

2pi(k + k0)

����
∂C

=
1

2pi(k + k0)
( fk+k0(z+)� fk+k0(z�)) . (46)

To evaluate fk+k0 at z±, expression (26) must be generalized as follows:

fk(z) = exp
✓

k
Z

z dz

a(z � z+)(z � z�)

◆
= exp

✓
k

a(z+ � z�)
ln

✓
z � z+

z � z�

◆◆
,

(47)
where possible multiplicative constants are neglected.

It is apparent that fk+k0(z+) and fk+k0(z�) are divergent; as a result, the eval-
uation of Eq. (46) is non-trivial. Therefore, we introduce the cut-off, #, near the
fixed points z = z±, bearing in mind the application to entanglement entropy
(Fig. 3).

#
z+

s!
•

Figure 3: Cut-off region near z+ (Colored in gray). The radius of the cut-off is #
in the z plane.

The structure near z± in terms of t and s can be determined from the follow-
ing generalization of Eq. (29):

t + is =
Z

z dz

az2 + bz + c
=

1
a(z+ � z�)

ln
✓

z � z+

z � z�

◆
. (48)

Introducing L as the length of the separation between z+ and z� in the imagi-
nary direction,

z+ � z� = i

p
|b2 � 4ac|

a
⌘ iL, (49)
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Torus geometry
After rescaling, 

s

t

p

�p

� p2

ln(L/#)
p2

ln(L/#)

Figure 5: Time translation in terms of rescaled g(z). By rescaling, the functional
values coincide at the upper and lower dashed lines; the dashed lines can thus
be identified. The thick lines on the right and left is actually the same line in the
z-plane; thus, it is virtually a torus geometry.

by invoking Eqs. (7) and (43). Here we denote the contour with the cut-off as
C#. The above expression can be further evaluated as

CI[k|� k] =
⇣

k3 � (b2 � 4ac)k
⌘ ln L

# +
ip
2

apL
. (62)

Employing the divergent rescaling (56) and neglecting the finite ip/2 term,

CI[k|� k] =
⇣

k3 � x2(b2 � 4ac)k
⌘

. (63)

Thus, we arrive at the following Virasoro algebra:

[Lk,Lk0 ] = (k � k0)Lk+k0 +
cCFT

12

⇣
k3 � x2(b2 � 4ac)k

⌘
dk,�k0 , (64)

[Lk,Lk0 ] = (k � k0)Lk+k0 +
cCFT

12
k3dk,�k0 (65)

where k is either an integer or half-integer. In addition, a, b, and c are the original
values before rescaling, as introduced in Eq. (40). However, Lk is defined by
Eq. (33) with the rescaled xg(z) and fk(z) which are also defined by the rescaled
xg(z) in Eq. (6).
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by invoking Eqs. (7) and (43). Here we denote the contour with the cut-off as
C#. The above expression can be further evaluated as

CI[k|� k] =
⇣

k3 � (b2 � 4ac)k
⌘ ln L

# +
ip
2

apL
. (62)

Employing the divergent rescaling (56) and neglecting the finite ip/2 term,

CI[k|� k] =
⇣

k3 � x2(b2 � 4ac)k
⌘

. (63)

Thus, we arrive at the following Virasoro algebra:

[Lk,Lk0 ] = (k � k0)Lk+k0 +
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⇣
k3 � x2(b2 � 4ac)k
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dk,�k0 , (64)

[Lk,Lk0 ] = (k � k0)Lk+k0 +
cCFT

12
k3dk,�k0 (65)

where k is either an integer or half-integer. In addition, a, b, and c are the original
values before rescaling, as introduced in Eq. (40). However, Lk is defined by
Eq. (33) with the rescaled xg(z) and fk(z) which are also defined by the rescaled
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✓
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#

◆
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for Eq. (52) to vanish.
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k =
paL

ln (L/#)
n, n 2 Z or Z +

1
2

. (55)
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= 1 (57)
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�
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#

�

apL
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The rescaling (56) also affects the range of t and s as
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�

L

#

� < t <
p2
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�

L

#

� . (59)

Thus, there is now a torus to be integrated over with the moduli parameter

t = i
p

ln (L/#)
, (60)

as depicted in Fig. 5.
The introduction of cut-off # and the corresponding rescaling of g(z) elimi-

nate the undesirable contribution to CI[k|k0] for k 6= �k0. However, the case for
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⌘ Z

C"

dz
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1
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, (61)
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with b
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which would also develop into the fixed point as t ! •. The entire sphere can
be divided into two hemisphere, (c) and (d), each boundary of which accommo-
dates the states hfL
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| and |fL

i
i respectively. Glueing (c) and (d) at the red dashed

line yields Eq. (72), or Fig. 8 (a).

where t takes the negative values (Fig. 7 (c)).
One can the glue Eqs. (70) and (71) (or (c) and (d) of Fig.7 ) to obtain the

following expression:
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Another way to explicate Eq. (72) is to consider a cut with the length L on
each side of which hfL

j
| and |fL

i
i resides respectively. The path integration is

performed on the entire Riemann sphere except the cut L (Fig.8(a)). One can
convince oneself of Eq. (72) by integrating over the cut L with the condition
fL

j
(x) = fL

i
(x) since the integration (or the trace) yields the partition function

h0|0i, which is nothing but the path integration over the entire sphere.
Note the lefthand side of Eq. (72) takes the form of a density matrix which

corresponds to the vacuum. What is implicit here is that this density matrix
depends only on the sector related to L, since the sector originated from the
compliment space L

c is already integrated out in the righthand side of Eq. (72).
Therefore this matrix is the reduced density matrix of the vacuum:
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|0ih0|fL
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i ⌘ Z ⇥ (r)
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. (74)

where Z is the partition function of the entire system:
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where H is the generator of the time development, namely the Hamiltonian,
and L

0 is the region developed from the original segment L during time period
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length L (solid line). We refer to this section of space as L without fear of con-
fusion. The rest of the space, including infinity, is depicted as a dashed line and
denoted L

c. After sweeping the entire complex plane, including infinity, with
the exception of the cut-off region (gray dots), the flow returns to the original
line.

If the time-flow generated by H has a fixed point as t increases to infinity as
shown in Fig. 7 (a), any state would flow into the lowest energy state, that is,
the vacuum:
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where L
c is the space compliment to L (Fig. 7 (b)), and we attach either L

c or the
superscript c to the functions, the states, the coordinate that are associated with
L

c. See Fig. 7 (d). Also S is the appropriate conformal symmetric action. Note
that t should take only positive values, hence the subscript � 0 is attached. The
Hermitian conjugation of Eq. (70) with a different state |fL
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dates the states hfL
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where t takes the negative values (Fig. 7 (c)).
One can the glue Eqs. (70) and (71) (or (c) and (d) of Fig.7 ) to obtain the

following expression:
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Another way to explicate Eq. (72) is to consider a cut with the length L on
each side of which hfL

j
| and |fL

i
i resides respectively. The path integration is

performed on the entire Riemann sphere except the cut L (Fig.8(a)). One can
convince oneself of Eq. (72) by integrating over the cut L with the condition
fL

j
(x) = fL

i
(x) since the integration (or the trace) yields the partition function

h0|0i, which is nothing but the path integration over the entire sphere.
Note the lefthand side of Eq. (72) takes the form of a density matrix which

corresponds to the vacuum. What is implicit here is that this density matrix
depends only on the sector related to L, since the sector originated from the
compliment space L

c is already integrated out in the righthand side of Eq. (72).
Therefore this matrix is the reduced density matrix of the vacuum:
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where H is the generator of the time development, namely the Hamiltonian,
and L

0 is the region developed from the original segment L during time period
t.

z

L

L
c

L
c

Figure 6: The flow of time t can be considered to begin at a section of space with
length L (solid line). We refer to this section of space as L without fear of con-
fusion. The rest of the space, including infinity, is depicted as a dashed line and
denoted L

c. After sweeping the entire complex plane, including infinity, with
the exception of the cut-off region (gray dots), the flow returns to the original
line.

If the time-flow generated by H has a fixed point as t increases to infinity as
shown in Fig. 7 (a), any state would flow into the lowest energy state, that is,
the vacuum:

|fL
0

i
(t)i = e

�tH|fL

i
i ! |0i. (70)

The situation can be succinctly summarized in the following path integral:

h0|fL

i
i =

Z
DfL

c

(x
c)

Z

f(0,x)=fL

i
(x),f(0,xc)=fLc (xc)

Df(t�0, x)e�S, (71)

where L
c is the space compliment to L (Fig. 7 (b)), and we attach either L

c or the
superscript c to the functions, the states, the coordinate that are associated with
L

c. See Fig. 7 (d). Also S is the appropriate conformal symmetric action. Note
that t should take only positive values, hence the subscript � 0 is attached. The
Hermitian conjugation of Eq. (70) with a different state |fL

j
i on the L can be

written as

hfL

j
|0i =

Z
DfL

c

(x
c)

Z

f(0,x)=fL

j
(x),f(0,xc)=fLc (xc)

Df(t0, x)e�S, (72)

14

where H is the generator of the time development, namely the Hamiltonian,
and L

0 is the region developed from the original segment L during time period
t.

z

L

L
c

L
c

Figure 6: The flow of time t can be considered to begin at a section of space with
length L (solid line). We refer to this section of space as L without fear of con-
fusion. The rest of the space, including infinity, is depicted as a dashed line and
denoted L

c. After sweeping the entire complex plane, including infinity, with
the exception of the cut-off region (gray dots), the flow returns to the original
line.

If the time-flow generated by H has a fixed point as t increases to infinity as
shown in Fig. 7 (a), any state would flow into the lowest energy state, that is,
the vacuum:

|fL
0

i
(t)i = e

�tH|fL

i
i ! |0i. (70)

The situation can be succinctly summarized in the following path integral:

h0|fL

i
i =

Z
DfL

c

(x
c)

Z

f(0,x)=fL

i
(x),f(0,xc)=fLc (xc)

Df(t�0, x)e�S, (71)

where L
c is the space compliment to L (Fig. 7 (b)), and we attach either L

c or the
superscript c to the functions, the states, the coordinate that are associated with
L

c. See Fig. 7 (d). Also S is the appropriate conformal symmetric action. Note
that t should take only positive values, hence the subscript � 0 is attached. The
Hermitian conjugation of Eq. (70) with a different state |fL

j
i on the L can be

written as

hfL

j
|0i =

Z
DfL

c

(x
c)

Z

f(0,x)=fL

j
(x),f(0,xc)=fLc (xc)

Df(t0, x)e�S, (72)

14

t!+•
|fL

i
i

|fL
0

i
i

(a)

L L
0

t!+•

(b)

L

L
c

t!�•

(c)

hfL

j
|

hfL
c |

t!+•

(d)

|fL

i
i

|fL
ci

Figure 7: (a) The time development from the section L to L
0 by the generator

with b
2 � 4ac > 0. (b) The section L is complimented by the rest of the space L

c,
which would also develop into the fixed point as t ! •. The entire sphere can
be divided into two hemisphere, (c) and (d), each boundary of which accommo-
dates the states hfL

j
| and |fL

i
i respectively. Glueing (c) and (d) at the red dashed

line yields Eq. (72), or Fig. 8 (a).

where t takes the negative values (Fig. 7 (c)).
One can the glue Eqs. (70) and (71) (or (c) and (d) of Fig.7 ) to obtain the

following expression:

hfL

j
|0ih0|fL

i
i =

Z

f(0�,x)=fL

j
(x),f(0+,x)=fL

i
(x)

Df(t, x)e�S. (73)

Another way to explicate Eq. (72) is to consider a cut with the length L on
each side of which hfL

j
| and |fL

i
i resides respectively. The path integration is

performed on the entire Riemann sphere except the cut L (Fig.8(a)). One can
convince oneself of Eq. (72) by integrating over the cut L with the condition
fL

j
(x) = fL

i
(x) since the integration (or the trace) yields the partition function

h0|0i, which is nothing but the path integration over the entire sphere.
Note the lefthand side of Eq. (72) takes the form of a density matrix which

corresponds to the vacuum. What is implicit here is that this density matrix
depends only on the sector related to L, since the sector originated from the
compliment space L

c is already integrated out in the righthand side of Eq. (72).
Therefore this matrix is the reduced density matrix of the vacuum:

hfL

i
|0ih0|fL

j
i ⌘ Z ⇥ (r)

ij
= (trLc (|0ih0|))

ij
. (74)

where Z is the partition function of the entire system:

Z = Â
i

hfL

i
|0ih0|fL

i
i = Â

i

(trLc (|0ih0|))
ii

. (75)

15



Entanglement Entropy

t!+•
|fL

i
i

|fL
0

i
i

(a)

L L
0

t!+•

(b)

L

L
c

t!�•

(c)

hfL

j
|

hfL
c |

t!+•

(d)

|fL

i
i

|fL
ci

Figure 7: (a) The time development from the section L to L
0 by the generator

with b
2 � 4ac > 0. (b) The section L is complimented by the rest of the space L

c,
which would also develop into the fixed point as t ! •. The entire sphere can
be divided into two hemisphere, (c) and (d), each boundary of which accommo-
dates the states hfL

j
| and |fL

i
i respectively. Glueing (c) and (d) at the red dashed

line yields Eq. (72), or Fig. 8 (a).

where t takes the negative values (Fig. 7 (c)).
One can the glue Eqs. (70) and (71) (or (c) and (d) of Fig.7 ) to obtain the

following expression:

hfL

j
|0ih0|fL

i
i =

Z

f(0�,x)=fL

j
(x),f(0+,x)=fL

i
(x)

Df(t, x)e�S. (73)

Another way to explicate Eq. (72) is to consider a cut with the length L on
each side of which hfL

j
| and |fL

i
i resides respectively. The path integration is

performed on the entire Riemann sphere except the cut L (Fig.8(a)). One can
convince oneself of Eq. (72) by integrating over the cut L with the condition
fL

j
(x) = fL

i
(x) since the integration (or the trace) yields the partition function

h0|0i, which is nothing but the path integration over the entire sphere.
Note the lefthand side of Eq. (72) takes the form of a density matrix which

corresponds to the vacuum. What is implicit here is that this density matrix
depends only on the sector related to L, since the sector originated from the
compliment space L

c is already integrated out in the righthand side of Eq. (72).
Therefore this matrix is the reduced density matrix of the vacuum:

hfL

i
|0ih0|fL

j
i ⌘ Z ⇥ (r)

ij
= (trLc (|0ih0|))

ij
. (74)

where Z is the partition function of the entire system:

Z = Â
i

hfL

i
|0ih0|fL

i
i = Â

i

(trLc (|0ih0|))
ii

. (75)

15

where H is the generator of the time development, namely the Hamiltonian,
and L

0 is the region developed from the original segment L during time period
t.

z

L

L
c

L
c

Figure 6: The flow of time t can be considered to begin at a section of space with
length L (solid line). We refer to this section of space as L without fear of con-
fusion. The rest of the space, including infinity, is depicted as a dashed line and
denoted L

c. After sweeping the entire complex plane, including infinity, with
the exception of the cut-off region (gray dots), the flow returns to the original
line.

If the time-flow generated by H has a fixed point as t increases to infinity as
shown in Fig. 7 (a), any state would flow into the lowest energy state, that is,
the vacuum:

|fL
0

i
(t)i = e

�tH|fL

i
i ! |0i. (70)

The situation can be succinctly summarized in the following path integral:

h0|fL

i
i =

Z
DfL

c

(x
c)

Z

f(0,x)=fL

i
(x),f(0,xc)=fLc (xc)

Df(t�0, x)e�S, (71)

where L
c is the space compliment to L (Fig. 7 (b)), and we attach either L

c or the
superscript c to the functions, the states, the coordinate that are associated with
L

c. See Fig. 7 (d). Also S is the appropriate conformal symmetric action. Note
that t should take only positive values, hence the subscript � 0 is attached. The
Hermitian conjugation of Eq. (70) with a different state |fL

j
i on the L can be

written as

hfL

j
|0i =

Z
DfL

c

(x
c)

Z

f(0,x)=fL

j
(x),f(0,xc)=fLc (xc)

Df(t0, x)e�S, (72)

14

t!+•
|fL

i
i

|fL
0

i
i

(a)

L L
0

t!+•

(b)

L

L
c

t!�•

(c)

hfL

j
|

hfL
c |

t!+•

(d)

|fL

i
i

|fL
ci

Figure 7: (a) The time development from the section L to L
0 by the generator

with b
2 � 4ac > 0. (b) The section L is complimented by the rest of the space L

c,
which would also develop into the fixed point as t ! •. The entire sphere can
be divided into two hemisphere, (c) and (d), each boundary of which accommo-
dates the states hfL

j
| and |fL

i
i respectively. Glueing (c) and (d) at the red dashed

line yields Eq. (72), or Fig. 8 (a).

where t takes the negative values (Fig. 7 (c)).
One can the glue Eqs. (70) and (71) (or (c) and (d) of Fig.7 ) to obtain the

following expression:

hfL

j
|0ih0|fL

i
i =

Z

f(0�,x)=fL

j
(x),f(0+,x)=fL

i
(x)

Df(t, x)e�S. (73)

Another way to explicate Eq. (72) is to consider a cut with the length L on
each side of which hfL

j
| and |fL

i
i resides respectively. The path integration is

performed on the entire Riemann sphere except the cut L (Fig.8(a)). One can
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where H is the generator of the time development, namely the Hamiltonian,
and L

0 is the region developed from the original segment L during time period
t.
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Figure 6: The flow of time t can be considered to begin at a section of space with
length L (solid line). We refer to this section of space as L without fear of con-
fusion. The rest of the space, including infinity, is depicted as a dashed line and
denoted L

c. After sweeping the entire complex plane, including infinity, with
the exception of the cut-off region (gray dots), the flow returns to the original
line.
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hamiltonian for the section L. Following the treatment in [29], it is convenient
to introduce the following generalization of the partition function:

Z(n) ⌘ tre
�nTHmod = Z

ntrrn, (79)

16

t!+•
|fL

i
i

|fL
0

i
i

(a)

L L
0

t!+•

(b)

L

L
c

t!�•

(c)

hfL

j
|

hfL
c |

t!+•

(d)

|fL

i
i

|fL
ci

Figure 7: (a) The time development from the section L to L
0 by the generator

with b
2 � 4ac > 0. (b) The section L is complimented by the rest of the space L

c,
which would also develop into the fixed point as t ! •. The entire sphere can
be divided into two hemisphere, (c) and (d), each boundary of which accommo-
dates the states hfL

j
| and |fL

i
i respectively. Glueing (c) and (d) at the red dashed

line yields Eq. (72), or Fig. 8 (a).

where t takes the negative values (Fig. 7 (c)).
One can the glue Eqs. (70) and (71) (or (c) and (d) of Fig.7 ) to obtain the

following expression:

hfL

j
|0ih0|fL

i
i =

Z

f(0�,x)=fL

j
(x),f(0+,x)=fL

i
(x)

Df(t, x)e�S. (73)

Another way to explicate Eq. (72) is to consider a cut with the length L on
each side of which hfL

j
| and |fL

i
i resides respectively. The path integration is

performed on the entire Riemann sphere except the cut L (Fig.8(a)). One can
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(x) since the integration (or the trace) yields the partition function

h0|0i, which is nothing but the path integration over the entire sphere.
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L and comes back to L. The corresponding generator is called the modular
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The reduced density matrix r is normalized as
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ii
= 1. (76)

If the reduced density matrix can be written as the exponentiation of an her-
mitian operator:

r =
e
�THmod

tr (e�THmod)
=

e
�THmod

Z
(77)

the operator is called the modular Hamiltonian in the context of axiomatic quan-
tum field theory [21]. In the context of statistical physics, this operator is also
called the entanglement Hamiltonian [22–28]. In the case at hand, the modular
Hamiltonian in question is nothing but

Hmod = aL1 + bL0 + cL�1 + aL̄1 + bL̄0 + cL̄�1 = L0 + L̄0, (78)

with b
2 � 4ac  0, which we have been studying in this note. This is because we

need the time flow that starts from one side of L where the state |fL

i
i is located,

and comes back to the other side of L where hfL

j
| is assigned, after covering the

entire sphere. See Fig. 8 (b) and compare it with Fig. 6.
With these setups, it is an almost trivial task to derive the entanglement

hamiltonian for the section L. Following the treatment in [29], it is convenient
to introduce the following generalization of the partition function:

Z(n) ⌘ tre
�nTHmod = Z

ntrrn, (79)

16

reduced density matrix



Entanglement Entropy

|fL

i
ihfL

j
|

(a)

L

(b)

L

Figure 8: (a) The cut L on the Riemann sphere. Two different states hfL

j
| and

|fL

i
i are assigned on the cut. (b) The time development which starts from the

L and comes back to L. The corresponding generator is called the modular
Hamiltonian Hmod.

The reduced density matrix r is normalized as

Â
i

(r)
ii
= 1. (76)

If the reduced density matrix can be written as the exponentiation of an her-
mitian operator:

r =
e
�THmod

tr (e�THmod)
=

e
�THmod

Z
(77)

the operator is called the modular Hamiltonian in the context of axiomatic quan-
tum field theory [21]. In the context of statistical physics, this operator is also
called the entanglement Hamiltonian [22–28]. In the case at hand, the modular
Hamiltonian in question is nothing but

Hmod = aL1 + bL0 + cL�1 + aL̄1 + bL̄0 + cL̄�1 = L0 + L̄0, (78)

with b
2 � 4ac  0, which we have been studying in this note. This is because we

need the time flow that starts from one side of L where the state |fL

i
i is located,

and comes back to the other side of L where hfL

j
| is assigned, after covering the

entire sphere. See Fig. 8 (b) and compare it with Fig. 6.
With these setups, it is an almost trivial task to derive the entanglement

hamiltonian for the section L. Following the treatment in [29], it is convenient
to introduce the following generalization of the partition function:

Z(n) ⌘ tre
�nTHmod = Z

ntrrn, (79)

16

t!+•
|fL

i
i

|fL
0

i
i

(a)

L L
0

t!+•

(b)

L

L
c

t!�•

(c)

hfL

j
|

hfL
c |

t!+•

(d)

|fL

i
i

|fL
ci

Figure 7: (a) The time development from the section L to L
0 by the generator

with b
2 � 4ac > 0. (b) The section L is complimented by the rest of the space L

c,
which would also develop into the fixed point as t ! •. The entire sphere can
be divided into two hemisphere, (c) and (d), each boundary of which accommo-
dates the states hfL

j
| and |fL

i
i respectively. Glueing (c) and (d) at the red dashed

line yields Eq. (72), or Fig. 8 (a).

where t takes the negative values (Fig. 7 (c)).
One can the glue Eqs. (70) and (71) (or (c) and (d) of Fig.7 ) to obtain the

following expression:

hfL

j
|0ih0|fL

i
i =

Z

f(0�,x)=fL

j
(x),f(0+,x)=fL

i
(x)

Df(t, x)e�S. (73)

Another way to explicate Eq. (72) is to consider a cut with the length L on
each side of which hfL

j
| and |fL

i
i resides respectively. The path integration is

performed on the entire Riemann sphere except the cut L (Fig.8(a)). One can
convince oneself of Eq. (72) by integrating over the cut L with the condition
fL

j
(x) = fL

i
(x) since the integration (or the trace) yields the partition function

h0|0i, which is nothing but the path integration over the entire sphere.
Note the lefthand side of Eq. (72) takes the form of a density matrix which

corresponds to the vacuum. What is implicit here is that this density matrix
depends only on the sector related to L, since the sector originated from the
compliment space L

c is already integrated out in the righthand side of Eq. (72).
Therefore this matrix is the reduced density matrix of the vacuum:

hfL

i
|0ih0|fL

j
i ⌘ Z ⇥ (r)

ij
= (trLc (|0ih0|))

ij
. (74)

where Z is the partition function of the entire system:

Z = Â
i

hfL

i
|0ih0|fL

i
i = Â

i

(trLc (|0ih0|))
ii

. (75)

15

t!+•
|fL

i
i

|fL
0

i
i

(a)

L L
0

t!+•

(b)

L

L
c

t!�•

(c)

hfL

j
|

hfL
c |

t!+•

(d)

|fL

i
i

|fL
ci

Figure 7: (a) The time development from the section L to L
0 by the generator

with b
2 � 4ac > 0. (b) The section L is complimented by the rest of the space L

c,
which would also develop into the fixed point as t ! •. The entire sphere can
be divided into two hemisphere, (c) and (d), each boundary of which accommo-
dates the states hfL

j
| and |fL

i
i respectively. Glueing (c) and (d) at the red dashed

line yields Eq. (72), or Fig. 8 (a).

where t takes the negative values (Fig. 7 (c)).
One can the glue Eqs. (70) and (71) (or (c) and (d) of Fig.7 ) to obtain the

following expression:

hfL

j
|0ih0|fL

i
i =

Z

f(0�,x)=fL

j
(x),f(0+,x)=fL

i
(x)

Df(t, x)e�S. (73)

Another way to explicate Eq. (72) is to consider a cut with the length L on
each side of which hfL

j
| and |fL

i
i resides respectively. The path integration is

performed on the entire Riemann sphere except the cut L (Fig.8(a)). One can
convince oneself of Eq. (72) by integrating over the cut L with the condition
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(x) since the integration (or the trace) yields the partition function
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corresponds to the vacuum. What is implicit here is that this density matrix
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The reduced density matrix r is normalized as
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i

(r)
ii
= 1. (76)

If the reduced density matrix can be written as the exponentiation of an her-
mitian operator:

r =
e
�THmod

tr (e�THmod)
=

e
�THmod

Z
(77)

the operator is called the modular Hamiltonian in the context of axiomatic quan-
tum field theory [21]. In the context of statistical physics, this operator is also
called the entanglement Hamiltonian [22–28]. In the case at hand, the modular
Hamiltonian in question is nothing but

Hmod = aL1 + bL0 + cL�1 + aL̄1 + bL̄0 + cL̄�1 = L0 + L̄0, (78)

with b
2 � 4ac  0, which we have been studying in this note. This is because we

need the time flow that starts from one side of L where the state |fL

i
i is located,

and comes back to the other side of L where hfL

j
| is assigned, after covering the

entire sphere. See Fig. 8 (b) and compare it with Fig. 6.
With these setups, it is an almost trivial task to derive the entanglement

hamiltonian for the section L. Following the treatment in [29], it is convenient
to introduce the following generalization of the partition function:

Z(n) ⌘ tre
�nTHmod = Z

ntrrn, (79)
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reduced density matrix

which includes the expression trrn. It is a well-known trick that the derivative
of trrn yields the entropy for the system governed by the density matrix r:

� d

dn
trrn

����
n=1

= �tr (r ln r) = S. (80)

Since we are treating the reduced density matrix here, we obtain the following
expression for the entanglement entropy:
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dn

Z(n)
Zn

����
n=1
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✓
1 � n
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dn

◆
ln Z(n)

����
n=1

. (81)

The partition function Z can be calculated through the integration over the
sphere, however the existence of the cut-off alter the integration to that on the
torus with the moduli parameter t (60) as argued earlier. By introducing

q = e
2pit, (82)

the partition function can be then expressed in the following familiar form:

Zt = trq
L0 q̄

L̄0 , (83)

where the subscript denotes the moduli parameter explicitly. While Ln is the
Virasoro charges on the torus, there should be the corresponding Virasoro al-
gebra on the sphere Ln, whose energy-momentum tensor differs due to the
Schwarzian derivative as

L0 = L0 �
cCFT

24
. (84)

Therefore, one can also express the partition function as follows;

Zt = q
(� cCFT

24 )q̄(�
c̄CFT

24 )trq
L0 q̄

L̄0 . (85)

To obtain Z(n) or Zt(n), one can simply replace q with q
n in the above expres-

sion. Noting the n dependence only enters in the following combination:

ln q
n = n ln q , ln q̄

n = n ln q̄, (86)

one can replace the n derivative in Eq. (80) with the derivative by ln q and ln q̄;

S =

✓
1 � ln q

∂

∂ ln q
� ln q̄

∂

∂ ln q̄

◆
ln Zt(ln q, ln q̄). (87)

One can further exploit the modular invariance of the partition function on the
torus by the following modular transformation:

t ! �1
t

. (88)
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h0|0i, which is nothing but the path integration over the entire sphere.
Note the lefthand side of Eq. (72) takes the form of a density matrix which

corresponds to the vacuum. What is implicit here is that this density matrix
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the operator is called the modular Hamiltonian in the context of axiomatic quan-
tum field theory [21]. In the context of statistical physics, this operator is also
called the entanglement Hamiltonian [22–28]. In the case at hand, the modular
Hamiltonian in question is nothing but

Hmod = aL1 + bL0 + cL�1 + aL̄1 + bL̄0 + cL̄�1 = L0 + L̄0, (78)

with b
2 � 4ac  0, which we have been studying in this note. This is because we

need the time flow that starts from one side of L where the state |fL
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i is located,

and comes back to the other side of L where hfL
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| is assigned, after covering the

entire sphere. See Fig. 8 (b) and compare it with Fig. 6.
With these setups, it is an almost trivial task to derive the entanglement

hamiltonian for the section L. Following the treatment in [29], it is convenient
to introduce the following generalization of the partition function:

Z(n) ⌘ tre
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j
| and |fL

i
i respectively. Glueing (c) and (d) at the red dashed

line yields Eq. (72), or Fig. 8 (a).

where t takes the negative values (Fig. 7 (c)).
One can the glue Eqs. (70) and (71) (or (c) and (d) of Fig.7 ) to obtain the

following expression:
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|0ih0|fL

i
i =

Z

f(0�,x)=fL

j
(x),f(0+,x)=fL

i
(x)

Df(t, x)e�S. (73)

Another way to explicate Eq. (72) is to consider a cut with the length L on
each side of which hfL

j
| and |fL

i
i resides respectively. The path integration is

performed on the entire Riemann sphere except the cut L (Fig.8(a)). One can
convince oneself of Eq. (72) by integrating over the cut L with the condition
fL

j
(x) = fL

i
(x) since the integration (or the trace) yields the partition function

h0|0i, which is nothing but the path integration over the entire sphere.
Note the lefthand side of Eq. (72) takes the form of a density matrix which

corresponds to the vacuum. What is implicit here is that this density matrix
depends only on the sector related to L, since the sector originated from the
compliment space L

c is already integrated out in the righthand side of Eq. (72).
Therefore this matrix is the reduced density matrix of the vacuum:

hfL

i
|0ih0|fL

j
i ⌘ Z ⇥ (r)

ij
= (trLc (|0ih0|))

ij
. (74)

where Z is the partition function of the entire system:

Z = Â
i

hfL

i
|0ih0|fL

i
i = Â

i

(trLc (|0ih0|))
ii

. (75)
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Figure 8: (a) The cut L on the Riemann sphere. Two different states hfL

j
| and

|fL

i
i are assigned on the cut. (b) The time development which starts from the

L and comes back to L. The corresponding generator is called the modular
Hamiltonian Hmod.

The reduced density matrix r is normalized as

Â
i

(r)
ii
= 1. (76)

If the reduced density matrix can be written as the exponentiation of an her-
mitian operator:

r =
e
�THmod

tr (e�THmod)
=

e
�THmod

Z
(77)

the operator is called the modular Hamiltonian in the context of axiomatic quan-
tum field theory [21]. In the context of statistical physics, this operator is also
called the entanglement Hamiltonian [22–28]. In the case at hand, the modular
Hamiltonian in question is nothing but

Hmod = aL1 + bL0 + cL�1 + aL̄1 + bL̄0 + cL̄�1 = L0 + L̄0, (78)

with b
2 � 4ac  0, which we have been studying in this note. This is because we

need the time flow that starts from one side of L where the state |fL

i
i is located,

and comes back to the other side of L where hfL

j
| is assigned, after covering the

entire sphere. See Fig. 8 (b) and compare it with Fig. 6.
With these setups, it is an almost trivial task to derive the entanglement

hamiltonian for the section L. Following the treatment in [29], it is convenient
to introduce the following generalization of the partition function:

Z(n) ⌘ tre
�nTHmod = Z

ntrrn, (79)
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The expression for the entanglement entropy becomes

S =

✓
1 + ln q

∂

∂ ln q
+ ln q̄

∂

∂ ln q̄

◆
ln Z� 1

t
(ln q, ln q̄), (89)

and
ln q = 2pi

✓
�1

t

◆
= �2 ln

L

#
. (90)

Then, as argued in [29], the contribution from the term trq
L0 to the partition

function is exponentially suppressed provided that L0 is a positive definite op-
erator. Since the relevant contribution comes only from the part q

(� cCFT

24 )q̄(�
c̄CFT

24 ),
we arrive at

S =
cCFT + c̄CFT

6
ln

L

#
, (91)

which is in accordance with the known result.
Thus we have established the relation between our formalism and the entan-

glement entropy. In our treatment, the cut-off which is needed in the expression
of the entanglement entropy is naturally and geometrically introduced. The
boundary condition at the cut-off is also determined from the consistency. The
entanglement entropy and the cut-off boundary condition has been also dis-
cussed in the literature [30–32].

Another interesting connection with our formalism can be found by consid-
ering the infinitesimal limit of the section L:

L =

p
|b2 � 4ac|

a
! 0. (92)

This limit could be achieved by, for example, taking b ! 1 while keeping a =
c = � 1

2 , which in the limit yields

g(z) = �1
2

z
2 + z � 1

2
= �1

2
(z � 1)2, (93)

and the following time developing operator:

L0 �
L1 + L�1

2
+ L̄0 �

L̄1 + L̄�1
2

. (94)

The above time developing operator is nothing but the SSD Hamiltonian [1,2,4].
To investigate this limit further, it is rather convenient to stick to the original

notion of k as in Eq. (55) rather than the rescaling by x. Then, it is apparent from
Eq. (55) that k takes continuous values in the L ! 0 limit. The factor between
k and the integer, paL

ln(L/#) also appears as the (inverse) factor in the expression

18



Two or more sections

|fL

i
ihfL

j
|

(a)

L

(b)

L

Figure 8: (a) The cut L on the Riemann sphere. Two different states hfL

j
| and

|fL

i
i are assigned on the cut. (b) The time development which starts from the

L and comes back to L. The corresponding generator is called the modular
Hamiltonian Hmod.

The reduced density matrix r is normalized as

Â
i

(r)
ii
= 1. (76)

If the reduced density matrix can be written as the exponentiation of an her-
mitian operator:

r =
e
�THmod

tr (e�THmod)
=

e
�THmod

Z
(77)

the operator is called the modular Hamiltonian in the context of axiomatic quan-
tum field theory [21]. In the context of statistical physics, this operator is also
called the entanglement Hamiltonian [22–28]. In the case at hand, the modular
Hamiltonian in question is nothing but

Hmod = aL1 + bL0 + cL�1 + aL̄1 + bL̄0 + cL̄�1 = L0 + L̄0, (78)

with b
2 � 4ac  0, which we have been studying in this note. This is because we

need the time flow that starts from one side of L where the state |fL

i
i is located,

and comes back to the other side of L where hfL

j
| is assigned, after covering the

entire sphere. See Fig. 8 (b) and compare it with Fig. 6.
With these setups, it is an almost trivial task to derive the entanglement

hamiltonian for the section L. Following the treatment in [29], it is convenient
to introduce the following generalization of the partition function:

Z(n) ⌘ tre
�nTHmod = Z

ntrrn, (79)

16

J. Cardy,E. Tonni, J. Stat. Mech. (2016) 123103

G. Wong, JHEP04(2019)045 



of the central charge (63) yielding the delta function in the L ! 0 limit. There-
fore, simply taking the L ! 0 limit, we obtain the continuous Virasoro algebra,
which was found in [1, 2]:

[Lk,Lk0 ] = (k � k0)Lk+k0 +
cCFT

12
k3d(k + k0). (95)

Here we also took the step of the shifting L0 as Eq. (65).
In this limit, the new structure of the continuous Virasoro algebra emerges.

The details of this limiting procedure will be addressed in future publications.
It would be interesting to explore the implication of the SSD Hamiltonian and
the continuous Virasoro structure by taking the L ! 0 limit in the study of the
entanglement entropy.

Figure 9: The hatched disks are removed from the sphere and their boundaries
(dotted circles) are identified with each other, changing the topology from the
sphere to the torus. Note, in particular, that the shape of each boundary of the
disks is congruent with one of the time flows (arrowed lines).

The formalism developed in this note has a wider and intriguing applica-
tion. In the course of the above analysis, the existence of the cut-off, which itself
was introduced in order to preserve the consistency of the Virasoro algebra,
lead us to the Virasoro algebra on a torus. Therefore, the same analysis with the
arbitrary large “cut-off ” should yields the Virasoro algebra on the torus with
the arbitrary moduli parameter. This also opens up the possibility of construct-
ing the Virasoro algebra on a general two-dimensional surface with the higher
genus than the sphere and the torus, by contriving an appropriate time-flow
and applying the gluing procedure as the above (Fig. 9). It would be also in-
teresting to apply the present formalism to the calculation of the entanglement
entropy for multiple sections [33–35]. These possibilities will be pursued in fu-
ture studies.

In summary, we have shown that the time-flow associated with the class of
L1 + L�1 operator leads the Virasoro algebra on a torus. This fact was utilized to
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Hamiltonian Action 

c(2) = 1 c(2) = 0 c(2) = �1

Figure 2: Time translation on the Poincaré disk. On the boundary of the disk
(thick line), “time flow” is uniform without fixed point for R or c(2) = 1 case,
while it is limited to the finite region bounded by the two fixed points for R̄ or
c(2) = �1 case. H or c(2) = 0 case exhibits marginal behavior, and it has one
fixed point at infinity; The connection to dipolar quantization is apparent in this
depiction.

the other hand, the flow for R̄ is divided into the two segments on the edge. There,
the time flow in one segment covers only half of the entire edge. The situation
parallels the case studied by Bisognano and Wichmann [29], where the modular
Hamiltonian (automorphism, to be exact) maps the half of the entire space into it-
self. This resemblance further supports the interpretation presented above that R̄
corresponds to the modular Hamiltonian, or the entanglement Hamiltonian. Also,
one may consider the other half ”space” which cannot be reached by the time flow
as the space e↵ectively integrated out. This consideration further supports the
above mentioned connection to the entanglement Hamiltonian. The observation
here would also be useful in the study of SSD for the case of open strings, where
the setup of the upper half plane is natural.

In summary, we find the same structure in CQM as observed in 2d CFT where
the choice of the Hamiltonian leads to radial quantization, the dipolar quantization
or SSD, and the entanglement Hamiltonian, respectively. We identify the respec-
tive Hamiltonians in CQM using sl(2,R) symmetry. The findings here will o↵er a
simpler setup for the study of SSD and the entanglement Hamiltonians. It would
be also interesting to investigate further in the context of the conformal boot strap
approach [30] or the recent discussion of the CQM correlation function [31].

Acknowledgement: The author would like to thank N. Ishibashi, H. Katsura,
H. Kawai, K. Okunishi, S. Ryu, and the participants of the iTHEMS workshop
”Workshop on Sine square deformation and related topics, ” for fruitful discussions
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Figure 7: Time translation on the Poincaré disk. On the boundary of the disk
(thick line), “time flow” is uniform without fixed point for R or c(2) = 1 case,
while it is limited to the finite region bounded by the two fixed points for R̄ or
c(2) = �1 case. H or c(2) = 0 case exhibits marginal behavior, and it has one
fixed point at infinity; The connection to dipolar quantization is apparent in this
depiction.
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Because the above generator resembles the ordinary Hamiltonian, it is clarifying
to draw the graph of the potential V (q) = g

2
1
q2 + c(2)

8 q2 for each case , where we

presume g > 0 4) . Figure 1 shows the potential for the cases where c(2) equals 1,
0, and �1, respectively. In the following, we investigate each case.

q

V (q)

c(2) = 1

c(2) = 0

c(2) = �1

Figure 1: Potential V (q) for c(2) = 1, 0, and �1.

Reference [13] observed that the invariance of the Casimir invariant (56) is
apparent from the expressions (51) - (53), if one imposes the commutation relation
over q and p as [q, p] = iI:

1

2
HK0 +

1

2
K0H �D2 =

✓
g

4
�

3

16

◆
I, (81)

4)
For negative g, despite the apparent unbounded potential, the corresponding Schrödinger

equation for c
(2)

= 0 has a stable solution up to g = �
1
4 , similar to the Breitenlohner-Freedman

bound [15] in higher dimensional AdS space.
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