Quantum-Classical correspondence and Energy Scale Deformations

Tomotoshi Nishino (Kobe Univ.) Roman Krcmar (SAS) Andrej Gendiar (SAS) ... anonymous referee ...

arXiv:0810.0622

* Uniform Hamiltonian does not always have uniform ground state.

- Charge/Spin density wave, commensurate or incommensurate
- ex. Axial Next Nearest Neighbor Ising (ANNNI) model

Energy Scale Deformation

- * There is a modulated Hamiltonian whose ground state is uniform.
 - empty state of any Fermionic system (too trivial!)
 - (modulated/inhomogeneous) AKLT Hamiltonian

since H = sum of projectors, and pre factor can be arbitral

 $\begin{array}{c|c} 10^{4} \\ 10^{3} \\ 10^{2} \\ 10^{1} \end{array}$

10¹

 10^{0}

 10^{-1}

Ц

- Slow energy scale modulation would not affect a gapped ground state if the modulation is slow enough (or gap is wide enough) 10^6 10^7
- Exponential Deformation (Wilson, ..., Okunishi)

wilson lattice arXiv:1001.2594 $\mathcal{H}_{\lambda} = \sum_{n=1}^{N-1} e^{\lambda n} (c_{n+1}^{\dagger} c_n + c_n^{\dagger} c_{n+1})$

general framework arXiv:cond-mat/0702581

$$H_N(\Lambda) = \sum_{n=1}^{N-1} \Lambda^{N-n-1} h_{n,n+1},$$

arXiv:0704.1949

a classical counterpart: Hyperbolic Lattice

Ising model on Hyperbolic Lattice

- there is ferro-para phase transition
- always off critical
- row-to-row transfer matrix can be defined
- is it possible to find out the corresponding quantum Hamiltonian? (I have no answer)

probably, in anisotropic limit (how to define this limit?), one reaches the hyperbolic deformation. arXiv:0808.3858

$$H^{\cosh}(\lambda) = \frac{1}{2} \left[H^{\exp}(\lambda) + H^{\exp}(-\lambda) \right]$$
$$= \sum_{j=-N}^{N} \cosh j\lambda \ h_{j,j+1}.$$

ground-state is uniform, except for the edge state, as it was observed in the case of exp. deformation.

- a path to "spherical" deformation
 - * Corner Hamiltonian ~ Entanglement Hamiltonian
 - Okunishi proposed a quantum counterpart of CTMRG

$$K_{\rm N} = \sum_{n=1}^{N-1} nh_{n,n+1},$$
 cond-mat/0507195

- Hyperbolic "deformation" can be considered

$$H^{\mathrm{sinh}}(\lambda) = \sum_{j=-N}^{N} \sinh j\lambda \ h_{j,j+1} \,, \quad \text{arXiv:0808.3858}$$

* History in physics suggests the generalization to trigonometric deformations

$$H_{\text{Sph.}} = \sum_{\ell = -N/2}^{N/2-1} \cos(a\ell) h_{\ell,\ell+1}$$

arXiv:0810.0622

... well, the prototype was "cosine deformation", and not squared. How can one use the deformation? (I don't know.)

arXiv:0810.0622

最近接格子点間の「相関関数」を求めてみる。N=1000 サイトの系での 計算結果は?「境界効果」であるフリーデル振動が、内部まで浸透してい ることがわかる。(金属表面で電子密度が振動するのも同じようなもの)

Smooth Boundary Condition

飛び移り振幅-tを、系の両端で小さくすれば、上手

く「ターミネート」できるのではないか?

PHYSICAL REVIEW LETTERS

VOLUME 71

27 DECEMBER 1993

NUMBER 26

Smooth Boundary Conditions for Quantum Lattice Systems

M. Vekić and S. R. White

Department of Physics, University of California, Irvine, California 92717 (Received 1 September 1993)

We introduce a new type of boundary conditions, *smooth boundary conditions*, for numerical studies of quantum lattice systems. In a number of circumstances, these boundary conditions have substantially smaller finite-size effects than periodic or open boundary conditions. They can be applied to nearly any short-ranged Hamiltonian system in any dimensionality and within almost any type of numerical approach.

PACS numbers: 02.70.-c, 05.30.Fk, 75.10.Jm

まあまあ上手く行く

White の成果

飛び移り振幅 -t の、系の両端 でのスムージング関数

化学ポテンシャル変化に対する 粒子密度の変化

レンズのコーティングもまた同じ

← 望遠鏡の善し悪しは、対物レンズ
のコーティングを見ると、おおよそ
推測できることが多い。
(粗悪品は値段の割に口径が大!)

- a path to "spherical" deformation
 - * Corner Hamiltonian ~ Entanglement Hamiltonian
 - Okunishi proposed a quantum counterpart of CTMRG

$$K_{\rm N} = \sum_{n=1}^{N-1} nh_{n,n+1},$$
 cond-mat/0507195

- Hyperbolic "deformation" can be considered

$$H^{\mathrm{sinh}}(\lambda) = \sum_{j=-N}^{N} \sinh j\lambda \ h_{j,j+1} \,, \quad \text{arXiv:0808.3858}$$

* History in physics suggests the generalization to trigonometric deformations

$$H_{\text{Sph.}} = \sum_{\ell = -N/2}^{N/2-1} \cos(a\ell) h_{\ell,\ell+1}$$

arXiv:0810.0622

... well, the prototype was "cosine deformation", and not squared. How can one use the deformation? (I don't know.)

arXiv:0810.0622

Condensed Matter > Strongly Correlated Electrons

Spherical Deformation for One-dimensional Quant

Andrej Gendiar, Roman Krcmar, Tomotoshi Nishino

(Submitted on 3 Oct 2008 (v1), last revised 27 Dec 2010 (this version, v6))

[v1]
$$H_{\rm S}^N = -t \sum_{\ell=-N/2}^{N/2-2} \cos\left(\frac{\ell+1}{N-1}\pi\right) \left(c_{\ell}^{\dagger}c_{\ell+1} + c_{\ell+1}^{\dagger}c_{\ell}\right)$$

Submission history

From: Andrej Gendiar [view email] [v1] Fri, 3 Oct 2008 12:09:55 UTC (58 KB) [v2] Mon, 30 Mar 2009 14:55:38 UTC (71 KB) [v3] Fri, 19 Jun 2009 14:47:53 UTC (308 KB) [v4] Tue, 14 Jul 2009 17:15:13 UTC (326 KB) [v5] Thu, 16 Jul 2009 16:57:13 UTC (326 KB) [v6] Mon, 27 Dec 2010 08:05:20 UTC (447 KB)

... finally we reach sin² form, ... almost ACCIDENTALLY

Errara published in Prog. Theor. Phys. **123** (2010), 393.

393

Errata

Spherical Deformation for one-dimensional Quantum Systems

Andrej GENDIAR, Roman KRCMAR, and Tomotoshi NISHINO Prog. Theor. Phys. **122** (2009), 953.

In the article we have published, we studied the finite-size correction to the energy per site E^N/N for the spherically deformed free fermion lattice, whose Hamiltonian is given by

$$\hat{H}_{\rm S}^{(n)} = \sum_{\ell=1}^{N-1} \left[\sin \frac{\ell\pi}{N} \right]^n \left(-t \, \hat{c}_{\ell}^{\dagger} \hat{c}_{\ell+1} - t \, \hat{c}_{\ell+1}^{\dagger} \hat{c}_{\ell} - \mu \frac{\hat{c}_{\ell}^{\dagger} \hat{c}_{\ell} + \hat{c}_{\ell+1}^{\dagger} \hat{c}_{\ell+1}}{2} \right) \tag{1}$$

What happened?

- I visited Aachen, to discuss with Andrej Gendiar in 2008.

... we considered a way of reducing the boundary effect in 1D chain.

The following picture came up, though I do not understand what it is even now. (open problem)

a sphere has no border

let us focus on the width of each piece of paper.

$$\mathcal{H}_{\text{sine}}^{(N)} = -t \sum_{j=1}^{N-1} \left[\sin\left(\frac{j\pi}{N}\right) \right]^m \left(c_j^{\dagger} c_{j+1} + c_{j+1}^{\dagger} c_j\right)$$

Major contribution came from Andrej Gendiar

What happened?

- I visited Aachen, to discuss with Andrej Gendiar in 2008.

... we considered a way of reducing the boundary effect in 1D chain.

The following picture came up, though I do not understand what it is even now. (open problem)

any way, we checked the "cosine deformation" on the free fermion lattice, and confirmed that it reduces the boundary effect.

$$H_{\text{Sph.}} = \sum_{\ell = -N/2}^{N/2-1} \cos(a\ell) h_{\ell,\ell+1}$$

We report the result as [v1] of arXiv:0810.0622

ATTENTION: we submit [v1] to Prog. Theor. Phys. Referee pointed that the boundary effect is reduced, but still there is.

- Andrej proposed to consider cos^n also, since the function falls to 0 MORE SMOOTHLY than cos^1.

- I denied Andrej's proposal, since cos^n contradict the above SPHERE.

What happened?

- I visited Aachen, to discuss with Andrej Gendiar in 2008.
 - ... we considered a way of reducing the boundary effect in 1D chain.

Figure 2. Expectation value $\langle c_{\ell}^{\dagger}c_{\ell+1} + c_{\ell+1}^{\dagger}c_{\ell} \rangle$ of the spherically deformed lattice Fermion model when N = 400. For comparison, we also plot the same expectation value for the undeformed case.

What happened? - Andrej was right, and there is one another side story.

[ERRATA] arXiv:0810.0622

In the article we have published, we studied the finite-size correction to the energy per site E^N/N for the spherically deformed free fermion lattice, whose Hamiltonian is given by

$$\hat{H}_{\rm S}^{(n)} = \sum_{\ell=1}^{N-1} \left[\sin \frac{\ell\pi}{N} \right]^n \left(-t \, \hat{c}_{\ell}^{\dagger} \hat{c}_{\ell+1} - t \, \hat{c}_{\ell+1}^{\dagger} \hat{c}_{\ell} - \mu \frac{\hat{c}_{\ell}^{\dagger} \hat{c}_{\ell} + \hat{c}_{\ell+1}^{\dagger} \hat{c}_{\ell+1}}{2} \right) \tag{1}$$

for the case n = 1. While we proceeded to a further study on the spherical deformation, we noticed the data shown in Figs. 2-7 were incorrect, and these figures corresponded to the Hamiltonian for the case n = 2. This error happened due to a very primitive confusion in the file name of computational source codes, and we misused the data with n = 2, instead of n = 1. We show appropriate data for the typical case $\mu = 0$, which corresponds to the half filling.

Fig. 1. Bond correlations at half filling calculated for $\hat{H}_{\rm S}^{(n)}$ with n = 0, 1, and 2.

Fig. 2. Finite-size corrections to the energy.

Home Works (Conjectures)

Extension to higher dimensional system

- It is always possible to consider Hyperbolic lattice or deformation.
- Slowest modulation on N-dimensional sphere would be an extension of SSD.

Trotter decomposition

- What is the right Trotter decomposition between curved surface with constant curvature and corresponding quantum (lattice) system.

Fuzzy space

- How does non commutable space can be deformed in the manner of SSD?

[The world of Classical Physics is quite Wide]

electric magnet: should it be a cylinder?

What is the most appropriate form for the high field magnet?

Liu et al. arXiv:1907.03539

Spherical coil?

Hyperbolic helical coil?

Do find something rectangular/cylindrical

fill this space.

try to find on SNS.

Do find something rectangular/cylindrical

You are looking at rectangular screen.

u phone, also.

境界条件 (Boundary Condition) というもの

同じ水面でも、その性質は容れ物に よってエラく変化する。

a `pacific' of water

注) 文字が現れるのは一瞬だけ→

a glass of water

drawing by active boundary

→ 反射を減じて「無限を演出」したくなることもある

使われている、ことがある。

日立ウォータハンマ防止器

日本水道協会品質認証センター認証登録品

電気回路(や音響回路など)のインピーダンス整合も 境界からの信号反射を減じるための工夫である。

周期境界条件

境界を「てっとりばやく」消してしまう方法

むかい合う境界を「はり合わせて」 しまって、境界はないけれども閉じ た空間を作る。

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi_n(x) = E_n\psi_n(x)$$

1 次元井戸型ポテンシャルの問題では、x=0 と x=L を同一視して、空間を「輪」にしてしまう。→→

... でも、ちょっと、わざとらしくない? 空間を曲げないと輪にならないよ??

ようやく、本日の問題設定:

有限な1次元の格子上でフェルミ粒子が飛び移る系

$$\mathcal{H}^{(N)} = -t \sum_{j=1}^{N} (c_j^{\dagger} c_{j+1} + c_{j+1}^{\dagger} c_j)$$

空間が離散的、つまり「並んだ格子点」で表現されている点を除いて、井戸型 ポテンシャルと全く同じ問題。この格子上に置かれた粒子は、確率振幅-tで左 右の格子に飛び移り、境界であるj=1やj=Nから外へ、つまりj=0やj= N+1へと出て行くことはない。

粒子を格子点の数の半分まで入れて、物理量を 観察してみよう。(フェルミ粒子だから、波動 関数はスレーター行列式で与えられる。)

$$\mathcal{H}_{\text{sine}}^{(N)} = -t \sum_{j=1}^{N-1} \left[\sin\left(\frac{j\pi}{N}\right) \right]^m \left(c_j^{\dagger} c_{j+1} + c_{j+1}^{\dagger} c_j\right)$$

格子点の半分の数の粒子を放り込んで、再近接相関関数を計算してみると? m=2で、境界効果が「ほとんど」消失してしまった。

失敗談

$$\mathcal{H}_{\text{sine}}^{(N)} = -t \sum_{j=1}^{N-1} \left[\sin\left(\frac{j\pi}{N}\right) \right]^m \left(c_j^{\dagger} c_{j+1} + c_{j+1}^{\dagger} c_j\right)$$

Andrej Gendiar 氏が m = 2 の場合について集めた計算データを、メールで 受け取る際の「ドサクサ」で、私は m = 1 のデータだと思い込んで論文を 書いてしまった。↓ そして「運悪く」そのまま掲載されてしまった

Progress of Theoretical Physics, Vol. 122, No. 4, October 2009

Spherical Deformation for One-Dimensional Quantum Systems

Andrej GENDIAR,^{1,2} Roman KRCMAR¹ and Tomotoshi NISHINO^{2,3}

科学者は「正直者」でなければならない。(但し論文を書く時「だけ」) 「すんません、m=2 の間違いでした」という報告を書いて、その雑誌に 掲載してもらった。

Errata

Spherical Deformation for One-Dimensional Quantum Systems

Andrej GENDIAR, Roman KRCMAR and Tomotoshi NISHINO Prog. Theor. Phys. **122** (2009), 953.

(Received December 10, 2009; Revised December 23, 2009)

どうして境界効果が消失したの?

$$\mathcal{H}_{\text{sine}}^{(N)} = -t \sum_{j=1}^{N-1} \left[\sin\left(\frac{j\pi}{N}\right) \right]^m \left(c_j^{\dagger} c_{j+1} + c_{j+1}^{\dagger} c_j\right)$$

基底波動関数を(数値的に)調べてみると、m=2の場合の波動関数は 「hopping amplitude が一様な系で、周期境界条件を課した場合」の基底 波動関数と全く同じであることがわかった。

ここが量子力学の不思議! ←広義には「波動物理学」の不思議

数値計算から数理物理学へ

$$\hat{H}_{\rm S} = -t \sum_{\ell=1}^{N-1} \sin^2 \frac{\ell \pi}{N} \left(\hat{c}_{\ell}^{\dagger} \hat{c}_{\ell+1} + \hat{c}_{\ell+1}^{\dagger} \hat{c}_{\ell} \right)$$

… 私は足し算や引き算は苦手だから、ここから 先は計算が得意な方にバトンタッチする …

Exact ground state of the sine-square deformed XY spin chain J. Phys. A: Math. Theor. 44 (2011) 252001

Hosho Katsura

Department of Physics, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan

E-mail: hosho.katsura@gakushuin.ac.jp,

Abstract. We study the sine-square deformed quantum XY chain with open boundary conditions, in which the interaction strength at the position x in the chain of length L is proportional to the function $f_x = \sin^2[\frac{\pi}{L}(x-\frac{1}{2})]$. The model can be mapped onto a free spinless fermion model with site-dependent hopping amplitudes and on-site potentials via the Jordan-Wigner transformation. Although the singleparticle eigenstates of this system cannot be obtained in closed form, it is shown that the many-body ground state is identical to that of the uniform XY chain with periodic boundary conditions. This proves a conjecture of Hikihara and Nishino [Hikihara T and Nishino T 2011 *Phys. Rev. B* 83 060414(R)] based on numerical evidence.

証明されちゃった!! 但し、背景の「代数」は未解決なまま...

柳の下にはドジョウが百匹:あらゆる等質空間へ!!!

まあ、今日はこの辺で 失礼します。

A Generalization: Spherical Deformation

N-site tight binding Hamiltonian

Boundary effect on the bond energy disappears completely!

A system under Open Boundary Condition gives data as efficient as those under Periodic Boundary Condition, under the spherical deformation.

