XXZ鎖における格子Unruh効果 と世界線エンタングルメント

新潟大理 奥西巧一, 関孝一

Feynman's blackboard at 1988

What gannot reate, Why const × sort . PO I do not understand. TOLEAR Bethe Amenty Probs. Know how to solve every problem that has been solv Hall accel. Temp Non Linear Oppined Hypeo = U(r, a)**Bethe Ansatz Prob Condo** g==4(t===) u(r==) 2-D Hall f=211.a [U.a] accel temp Non linear Classical Hydro tech Archives

Unruh effect

A constantly accelerating observer

$$x = \frac{e^{a\xi}}{a} \cosh(a\eta)$$
$$t = \frac{e^{a\xi}}{a} \sinh(a\eta)$$

sees the vacuum as a thermalized state with an effective temp. (Unruh temp.)

$$\beta^* = \frac{2\pi}{a}$$

The Left and right parts are space like regimes, which are classically separable!

Rindler-Fulling quantization

constantly accelerating observer

R
$$x = \frac{e^{a\xi}}{a} \cosh(a\eta)$$

 $t = \frac{e^{a\xi}}{a} \sinh(a\eta)$

 a_k, a_k^{\dagger} with $a_k |0\rangle_M$ Minkowski vacuum $b_p^{\rm R}, b_p^{\rm R^{\dagger}}, b_p^{\rm L}, b_p^{\rm L^{\dagger}}$ with $b_p^{\rm R} |0\rangle_R = b_p^{\rm L} |0\rangle_L = 0$

Bogoliubov transformation $|0\rangle_{M} = e^{-\prod_{p} e^{-\pi p/a} b^{L^{\dagger}}_{p} b^{R^{\dagger}}_{p}} |0\rangle_{L} |0\rangle_{R}$ $\rho_{R} = \operatorname{Tr}_{L} |0\rangle_{M} \langle 0|_{M} = \prod_{p} e^{-\beta^{*} H_{p}}$ with $\beta^{*} = \frac{2\pi}{a}$ and $H_{p} = p b^{R^{\dagger}}_{p} b^{R}_{p}$

Ising-like XXZ chain $\lambda > 0 \quad (\Delta > 1)$ $\mathcal{H} = J_{\lambda} \sum_{n=-L+1}^{L} \left[S_{n}^{x} S_{n+1}^{x} + S_{n}^{y} S_{n+1}^{y} + \Delta S_{n}^{z} S_{n+1}^{z} \right]$ $J_{\lambda} = \frac{2}{\sinh \lambda} \qquad \Delta = \cosh \lambda$

The groundstate is gapful with a finite correlation length.

	ferro	crit	ical	AF/gapful	
	- <u>-</u>	1 0 X) 1 Y X	L	Δ
Bethe ansa	atz solvab	le	1 ///		

Bulk energy, excitation gap, magnetization, etc.

But, direct computation of the Bethe wavefunction is not so useful

geometry for EE

* This bipartition EE can be easily calculated by DMRG.

If we can write $\rho \sim \exp(-H_{\rm EE})$, H_{EE} is called entanglement Hamiltonian or modular Hamiltonian.

A modular Hamiltonian defines a time evolution in an angular direction different from the conventional time.

XXZ chain and 6-vertex model

,

$$W(\mu, \nu | \mu', \nu') = \mu - \mu'$$

$$W(+, + | +, +) = W(-, - | -, -) = 1$$

$$W(+, - | -, +) = W(-, + | +, -) = \frac{\sinh(u)}{\sinh(\lambda - u)}$$

$$W(+, - | +, -) = W(-, + | -, +) = \frac{\sinh(\lambda)}{\sinh(\lambda - u)}$$

satisfies Yang-Baxter relation

Commuting transfer matrices

[T(u), T(u')] = 0

$$T(u) = \sum_{\{\mu\}} \prod_{n} W_{n}(\mu_{n}, \nu_{n} | \mu_{n+1}, \nu_{n+1})$$

u : rapidity(=spectral parameter)

Hamiltonian of the XXZ chain

$$\mathcal{H} = -\left. \frac{d}{du} \log T(u) \right|_{u=0}$$

Simultaneous eigenstate $[T(u), \mathcal{H}] = 0$

 $\lambda > 1$ Ising-like anisotropy = antiferroelectric regime

integrability and CTM

The groundstate wavefunction of H can be written as a product of CTMs

$$\Psi \sim A(\lambda - u)A(u)$$
 with $A(u) \sim e^{-u\mathcal{K}}$

 ${\mathcal K}$ Hamiltonian of corner transfer matrix/corner Hamiltonian

$$\mathcal{K} \equiv J_{\lambda} \sum_{n=1}^{L} n \left\{ S_{n}^{x} S_{n+1}^{x} + S_{n}^{y} S_{n+1}^{y} + \Delta S_{n}^{z} S_{n+1}^{z} \right\}$$

Lattice Lorentz boost operator $A(-\mu)T(\nu)A(\mu) = T(\mu + \nu)$ (Rapidity shift operator)

 \Rightarrow The CTM formulation corresponds to the Rindler quantization of the relativistic quantum field theory

Lattice Poincare algebra

H.B.Thacker, Physica D 18, 348 (1986).

$$[P, \mathcal{H}] = 0, \quad [\mathcal{K}, P] = iH, \quad [\mathcal{K}, H] = i\tilde{I}_2$$
$$I_0 = iP \quad I_1 = -\mathcal{H} \quad \tilde{I}_2 = iI_2 = \sum [h_{n,n+1}, h_{n+1,n+2}] \quad \log T(u) = \sum \frac{I_n}{n!} u^n,$$

<u>Reduced density matrix</u> ${\mathcal K}$ plays a role of the entanglement Hamiltonian

$$\rho = \exp(-\beta_{\lambda}\mathcal{K})/Z$$
 with

$$\beta_{\lambda} \equiv 2\lambda$$
$$Z \equiv \operatorname{Tr} \exp(-\beta_{\lambda} \mathcal{K})$$

entanglement/corner Hamiltonian

$$\begin{array}{c} & & \\ \hline & & \\ 1 & 2 & 3 \end{array} \quad \dots \quad \begin{array}{c} & \\ L-1 & L \end{array} \quad \mathcal{K} \equiv J_{\lambda} \sum_{n=1}^{L} n \left\{ S_{n}^{x} S_{n+1}^{x} + S_{n}^{y} S_{n+1}^{y} + \Delta S_{n}^{z} S_{n+1}^{z} \right\}$$

Free boundary condition at n=1, L

The boundary effect at n=1 should be perfectly suppressed

The energy scale is proportional to n

Effective temperature decreases as n increases. (This can be a source of difficulty in a QMC simulation)

off-diagonal interaction diagonal interaction (XY-terms) (zz terms)

The energy scale is proportional to n. We draw WLs as circles "classical" entanglement surrounding the entangle point

Scale imaginary time: τ $\theta = a\tau$ with $a = \frac{2\pi}{\beta_{\lambda}} = \frac{\pi}{\lambda}$ $0 \le \tau < \beta_{\lambda}$

a : effective acceleration

a=0 : classical limit

snapshots $\Delta = 2.0 \qquad \beta_{\lambda} \equiv 2\lambda$ $(\lambda = 1.3169\cdots)$

How can the "uniform" ground state be realized for the non uniform Hamiltonian?

off-diagonal parts of local energy

At $\beta = \beta^*$, the normalized bond energy and kink density become flat around n=1

reproduces uniform ground state wavefunction.

correlation functions $\Delta = 2.0$

Perfect correspondence to the DMRG results for the groundstate of H

Entanglement Entropy

The groundstate entanglement entropy for H can be calculated as the thermal entropy for the entanglement Hamiltonian.

$$S_{\rm EE} = -\mathrm{Tr}_{S}[\rho \log \rho] = \beta_{\lambda} \langle \mathcal{K} \rangle + \log Z$$

We calculate S_EE with integration of a specific heat estimated by a QMC simulation.

$$S_{\text{EE}} = L \log 2 - \int_{T_{\lambda}}^{\infty} \frac{C_{\text{v}}}{T} dT = L \log 2 - \int_{\log T_{\lambda}}^{\infty} C_{\text{v}} dx$$

The estimation of the entropy is not easy but possible with QMC.

Eneanglement Entropy

Estimation of EE approaches to the exact value of EE for the halfOinfinite subsystem

The deviation from the DMRG result originates from geometry of world sheets: DMRG: cylinder, corner Hamiltonian: annuls

Unruh-DeWitt detector

$$S = \int d\eta \phi(x(\eta), t(\eta)) \hat{X}(\eta) \qquad x = r \cosh(a\eta), t = r \sinh(a\eta)$$

The detector is excited by the thermalized vacuum.

Excitation rate is given by an integration of the Wightman function

$$\implies P_n \propto \int d\eta e^{i\omega_n\eta} {}_M \langle \phi(x(\eta), t(\eta))\phi(r, 0) \rangle_M$$

Capturing the Bose distribution with the Unruh temp.

$$P_n \propto \frac{1}{e^{\beta_U \omega_n} - 1}$$

(massless case)

η

R

XXZ-chain analogue of the detector

A harmonic oscillator coupled with a spin in the XXZ chain

But, the detector does not accelerate in the chain literally .

<u>Scalar field</u> $\phi(x(\eta), t(\eta)) = e^{ia\eta L}\phi(r, 0)e^{-ia\eta L}$

 η -dependent Lorentz transformation

Spin coupled with the detector : ${\cal K}$ lattice Lorentz boost

$$S_n^{\mu}(\eta) = e^{-ia\eta \mathcal{K}} S_n^{\mu} e^{ia\eta \mathcal{K}}$$

 $n \sim r$: distance from the entangle point

Autocorrelation function with respect to τ

$$G_n^{\mu}(\eta) \equiv \frac{\operatorname{Tr} S_n^{\mu}(\eta) S_n^{\mu}(0) e^{-\beta_{\lambda} \mathcal{K}}}{Z}$$

Autocorrelations

DMRG: Renormalization transformation matrix givesthe relation between the Kdiagonal bases and the usual spin basesBogoliubov trans.(Rindler)(Minkowski)

n=1 0.25classical value $|G_1^{x,z}(\eta)|$ π/a periodicity phase Imaginary shift $G_1^z(\eta)$ of the rapidity $G_1^x(\eta)$ $-\pi$ $\frac{\pi}{a}$ 0 η + $\frac{\pi}{a}$ π 0 η lattice effect

summary/discussions arXiv:1906.10441

• We calculate the groundstate properties of the Isinglike XXZ chain with a finite temperature formulation based on the entanglement Hamiltonian/CTM.

Lattice Unruh effect

- We can understand the entanglement from the viewpoint of classical world lines surrounding the entangle point world-line entanglement
- Can we realize lattice Unruh-Dewitt detector?

entanglement detector

• Critical cases? CFT, SSD, numerically bad convergence