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In the present study, we examine the case of a particular time development
which was left for further study in Ref. [2]. The time development in question
can be achieved using

L1 + L�1 + L̄1 + L̄�1, (1)

as the time-development operator, instead of L0 + L̄0. The holomorphic part
of Eq. (1), L1 + L�1 has also been investigated in a different context [18] in
which the Hamiltonian was retained as L0 + L̄0. In this study, we change the
Hamiltonian itself to (1), and examine its consequences. In fact, this case turned
out to correspond to the entanglement Hamiltonian as discussed in Ref. [11],
and further explored in Ref. [14, 15], thus providing further motivation for the
present research.

Let us elucidate the significance of the operator (1) in the context of the radial
quantization [19] and the dipolar quantization [1, 2]. As is well-known, the
L0, L1 and L�1 operators constitute sl(2, R) algebra. The combination of these
operators,
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x
0(0)

L0 + x
0(1)

L1 + x
0(�1)

L�1, (3)

by the adjoint action of sl(2, R); however, the following quadratic form of the
coefficients, which is known as the quadratic Casimir element, remains the
same 1:

c
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x
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x
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Using c
(2), the general linear combinations (2) can be classified into three

distinctive classes that are not accessible from each other by the sl(2, R) action.
Each class can be represented by a typical operator up to the overall rescaling:
L0 represents case c

(2) > 0 and L0 � 1
2(L1 + L�1) represents case c

(2) = 0, which
correspond to radial quantization and dipolar quantization, respectively. The
final case, c

(2) < 0, can be represented by L1 + L�1, which signifies the impor-
tance of the operator in question. Below, we investigate the L1 + L�1 operator
by applying the formalism developed in [1, 2] and demonstrate that the three
cases mentioned above, including L1 + L�1, can be studied in a unified manner.

1In this study, the sign convention in the definition of the quadratic Casimir element differs
from that in our previous publications [1, 2, 13]
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Evolution operators in conformal field theories and conformal mappings:
Entanglement Hamiltonian, the sine-square deformation, and others
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By making use of conformal mapping, we construct various time-evolution operators in (1+1)-dimensional
conformal field theories (CFTs), which take the form

∫
dx f (x)H(x), where H(x) is the Hamiltonian density

of the CFT and f (x) is an envelope function. Examples of such deformed evolution operators include the
entanglement Hamiltonian and the so-called sine-square deformation of the CFT. Within our construction, the
spectrum and the (finite-size) scaling of the level spacing of the deformed evolution operator are known exactly.
Based on our construction, we also propose a regularized version of the sine-square deformation, which, in
contrast to the original sine-square deformation, has the spectrum of the CFT defined on a spatial circle of finite
circumference L, and for which the level spacing scales as 1/L2, once the circumference of the circle and the
regularization parameter are suitably adjusted.

DOI: 10.1103/PhysRevB.93.235119

I. INTRODUCTION

Many classical statistical mechanical systems and quantum
many-body systems at criticality enjoy conformal invariance—
invariance under scale as well as special conformal trans-
formations. Combined with translations and spatial rotations
(or space-time Lorentz boosts), they are invariant under
the conformal group. That critical systems are conformally
invariant can be exploited to put some constraints on the
operator content of the critical theory. Such constraints are
most restrictive and powerful in 2 or (1+1) dimensions, and
in some cases can fully specify [1] the critical theory [2].

In this work, we consider various kinds of deformations
of (1+1)-dimensional conformal field theories (CFTs). By
“deformation” we mean the following. Let H(x) be the
Hamiltonian density of a CFT where x is the spatial coordinate.
Then, the ordinary time evolution is generated by

H =
∫

dx H(x). (1)

We deform this Hamiltonian by introducing an envelope
function f (x) as

H [f ] =
∫

dx f (x)H(x). (2)

Similarly, suppose we have a lattice model, which is critical
and described by a CFT. Schematically, its Hamiltonian is
given by

H =
∑

i

hi,i+1, (3)

where hi,i+1 is the lattice analog of the Hamiltonian density.
(We have restricted ourselves to the case of nearest-neighbor
interactions, and neglected for simplicity farther-neighbor
interactions. The lattice here can be periodic, infinite, or even
open, but we are interested in the Hamiltonian density.) We
deform this lattice Hamiltonian by introducing an envelope

function f (x) as

H [f ] =
∑

i

f

(
xi + xi+1

2

)
hi,i+1. (4)

There are various problems that fit into the above class of
deformations. For example, let us consider the ground state
|!⟩ of a CFT defined on infinite one-dimensional space, and
then define the reduced density matrix ρA associated with a
region x ∈ (−R,R) by ρA = TrB |!⟩⟨!|, where the partial
trace TrB is taken over the all degrees of freedom associated
with the region outside of the interval (−R,R). Then, the
entanglement Hamiltonian HE , defined by ρA = exp(−HE),
is of the form (2) where the envelope function is

f (x) = R2 − x2

2R
, x ∈ (−R,R), (5)

and f (x) = 0 otherwise [3– 7], i.e.,

HE =
∫ R

−R

dx
R2 − x2

2R
H(x). (6)

Another example is the so-called sine-square deformation
(SSD) of quantum many-body Hamiltonians in (1+1) dimen-
sions [8– 21]. In the SSD, one chooses the envelope function

f (s) = sin2
(πs

L

)
, for s ∈ (0,L), (7)

and f (s) ≡ 0 outside the interval (0,L). It was discovered that,
for CFTs, the ground state of the SSD Hamiltonian is identical
to the ground state of the CFT defined on an infinite one-
dimensional space. This has practical implications as the SSD
Hamiltonian allows us to study the CFT in the thermodynamic
limit by studying a finite system of length L (in numerical
simulations, say).

Yet another context where such a deformation has been
discussed is the quantum energy inequalities [22]. There are
also various other examples with non-translationally-invariant
interactions. See, for example, Refs. [23,24].
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XUEDA WEN, SHINSEI RYU, AND ANDREAS W. W. LUDWIG PHYSICAL REVIEW B 93, 235119 (2016)

TABLE I. Summary of conformal maps and deformed evolution operators discussed in the main text.

Conformal map “Time” “Space” Envelope function Spectrum of H̃

Angular quantization w = ln z v u f (x) = x Continuum
Radial quantization w = ln z u v f (s) = 1

L
Discrete

Entanglement Hamiltonian w = ln (z+R)
(z−R) v u f (x) = (x−R)(x+R)

2R
Discrete

Regularized SSD (rSSD) w = ln (z+R)
(z−R) u v f (s) = cos 2πs

L
+ cosh u0 Discrete

Sine-square deformation (SSD) w = 1
z

u v f (s) = sin2 πs
L

Continuum

Square root deformation (SRD) z = sin w v u f (x) =
√

x2 − R2 Discrete

Obviously, there are infinitely many ways to deform CFTs
in this way. As an attempt to find a systematic and controlled
construction of such deformations, we will make use of
conformal mapping. Our construction can be described as
follows: (i) We start from a reference (1+1)-dimensional
space-time, parametrized by a complex coordinate which is
denoted in the following by w, and an evolution operator H̃ .
(ii) We next pick a suitable conformal map which maps the
reference space-time (coordinate w) to the target space-time,
parametrized by a complex coordinate which we denote in
the following by z. The conformal map maps the set of
trajectories generated by H̃ (determined by the Killing vectors)
in the reference space-time to some (potentially complicated)
trajectories in the complex z plane. (iii) Finally, we transform
H̃ and express it in terms of the energy-momentum tensor
on the complex z plane. If we choose the reference evolution
H̃ to be something simple, by construction, the spectrum of
the deformed Hamiltonian is known exactly, and so is its level
spacing as a function of the parameters on which the conformal
map depends (e.g., the system size). Put differently, in our
construction we deal with the set of envelope functions, which
we can “undo” by choosing a suitable conformal map. See
Table I for various conformal maps and the resulting evolution
operators obtained in this paper.

The construction described above has been used, for
example, to obtain the entanglement Hamiltonian in a number
of cases [6,7,25]. In this paper, by making use of conformal
mapping, we describe various deformations of the CFT with
various envelope functions, and also discuss the finite-size
scaling of their spectra. As a particular example, we obtain a
regularized version of the SSD. The regularized SSD (rSSD)
is closed related to the entanglement Hamiltonian (defined for
a finite interval), in that the entanglement Hamiltonian and
the regularized SSD can be obtained from the same conformal
mapping. However, the direction of the evolutions generated
by them are orthogonal to each other. (In the fluid dynamics
language, the flows generated by these two evolution operators
correspond to the equipotential lines and the streamlines,
respectively.)

As compared to the original SSD, the regularized SSD has
the following properties: The spectrum of the regularized SSD
Hamiltonian matches the spectrum of a CFT with periodic
boundary conditions (PBCs). However, the level spacing of
the regularized SSD Hamiltonian shows (1/length)2 scaling,
as opposed to the familiar (1/length) scaling of a CFT with
PBCs. (To be more precise, the length here means the length
in the complex plane; in the actual Hamiltonian, one needs

to scale simultaneously both the size of the system and the
regularization parameter.)

On the contrary, the spectrum of the original SSD Hamil-
tonian is known to possess a continuous spectrum (in the
continuum limit and at criticality). For this reason, it is rather
subtle to discuss the scaling of the finite-size spectrum of
the SSD Hamiltonian on a lattice. Nevertheless, it has been
shown numerically that the spectrum of the SSD Hamiltonian
on a finite lattice shows (1/length)2 scaling. [Once again, this
should be contrasted with the ordinary (1/length) scaling of
ordinary CFT put on a finite cylinder.] The regularized SSD
does not have such subtle issues. The (1/length)2 scaling of
the regularized SSD may shed some light on the scaling of
the original SSD on a lattice, by taking the limit where the
regularization parameter goes to zero.

By using the same idea, we have also generated other
deformations of CFTs. For example, we obtain the “square
root” deformation (SRD) of CFTs, defined by the envelope
function

f (x) =
√

(R − x)(R + x) (8)

for x ∈ (−R,R) and f (x) = 0 otherwise [see Eq. (59)]. We
will show that the level spacing of the deformed evolution
operator with the envelope function (8) does not depend on R.
A special case of this deformation was previously discussed
in the context of quantum information transport in quantum
spin chains. In particular, so-called “perfect state transfer”
can be achieved in the XX model with inhomogeneous
nearest-neighbor couplings which are modulated according
to the envelope function (8) [26–30].

II. SINGLE VORTEX

We will consider conformal maps from the Euclidean
(“reference”) space-time to another (“target”) space-time. The
target space-time is parametrized by the complex coordinate
(z,z̄), and we write the real and imaginary parts of z as

z = x + iy. (9)

The coordinate of the reference space-time is denoted by
(w,w̄), and we write the real and imaginary parts of w as

w = u + iv. (10)

As a warm-up, we start by illustrating our strategy by taking
the well-known example of radial and angular quantization
of CFTs in the complex plane. Consider the conformal
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We can now investigate the effect of selecting Eq. (1) as the time-development
operator of the system using the aforementioned formalism. The choice of g(z)
that corresponds to Eq. (1) should be

g(z) = z
2 + 1. (23)

The time translation on z is then expressed as

� ∂

∂t
= �z

2 ∂

∂z
� ∂

∂z
� z̄

2 ∂

∂z̄
� ∂

∂z̄
. (24)

The relation between the above vector field (24) (or the choice of g(z)) and the
operator (1) can be easily deduced by noting the expression of the Virasoro gen-
erators as follows:

Ln =
1

2pi

I
dzz

n+1
T(z). (25)

z

i

�i

Figure 1: Flow of time t generated by
�
z

2 + 1
�

∂
∂z

+
�
z̄

2 + 1
�

∂
∂z̄

. t = �p/2 (or
p/2) on the solid line between i and �i, and t = 0 on the remainder of the
imaginary axis. The value of t is unavoidably periodic. A line with constant t is
shown in gray.

The selection (23) yields [2]

fk = exp(k
Z

z dz

z2 + 1
)ek·const. =

✓
i + z

i � z

◆� i

2 k

= e
k arctan z, (26)

and, finally,

lk = �(z2 + 1)ek arctan z
∂

∂z
. (27)
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2.2 Generalization

At this point, it would be beneficial to take notice of the fact that the choice
of the specific transformations in (18) was, even though it is in accordance
with the Laurent series and certainly stands as a natural one, completely
arbitrary. Therefore, we would like to reexamine the above procedure by
introducing more general (holomorphic) differential operators than those
in Eq. (19):

lk = �g(z) fk(z)
∂

∂z
, (25)

where g(z) and fk(z) are both holomorphic functions on z, and k is the
index specifies fk(z). In the following, we will see that for certain choices
of g(z), fk(z) and the algebra formed by lk are consistently derived. In
particular, choosing g(z) = z reproduces the above argument lead to the
Witt algebra (the classical Virasoro).

First, let us impose the following relation on fk(z):

l0 fk(z) = �k fk(z). (26)

l0 + l̄0 (27)

As we will see shortly, we can assume

l0 = �g(z)
∂

∂z
, (28)

or
f0(z) = 1, (29)

without inconsistency, hence Eq. (26) reads

g(z)
∂

∂z
fk(z) = k fk(z). (30)

One can readily solve Eq. (30) as

fk(z) = Akek
R z dz

g(z) , (31)

where Ak stands for a k depending constant of integration. Note that the
above expression (31) yields f0(z) = 1 if we take A0 to be unity, which we
do for the rest of the paper.

The commutation relation among lk can be easily derived as

[lk, lk0 ] = (k0 � k)g(z) fk(z) fk0(z)
∂

∂z
, (32)

8

where we utilized Eq. (30) in the following form:

∂

∂z
fk(z) =

k

g(z)
fk(z). (33)

Noting

fk(z) fk0(z) = Ak Ak0e
(k+k0)

R z dz
g =

Ak Ak0

Ak+k0
fk+k0(z) (34)

from Eq. (31), we find the Witt algebra;

[lk, lk0 ] = (k0 � k)lk+k0 , May be a typo (35)

[lk, lk0 ] = (k � k0)lk+k0 , (36)

if we impose Ak Ak0 = Ak+k0 , which is obviously satisfied by

Ak = econst.k. (37)

We have introduced fk(z) simply as a means to define lk, but the action
of lk on fk(z) is of some interest. It is simple to derive

lk fk0(z) = fk(z)l0 fk0(z) = �k0 fk(z) fk0(z) = �k0 fk+k0(z). (38)

The action of lk on fk0(z) alters the eigenvalue of fk0(z) in the amount of
k along with the numerical multiplication of �k0 yielding fk+k0(z). There-
fore, the Witt algebra (36) can be represented over the linear space spanned
by fk(z)’s.

The analysis presented above can be repeated for the other set of dif-
ferential operators characterized by

l̄0 ⌘ �g(z̄)
∂

∂z̄
, (39)

where z̄ stands for the complex conjugate of z. It is, then, apparent fk(z̄)
serves as a basis for the space on which the Witt algebra for l̄k is repre-
sented. Thus, we have constructed two independent set of the Witt algebra
and the representation space.

So far we have not imposed any restriction on the nature of the index
k. It could take either discrete or continuous value. It might be even a
complex number. It turns out that it depends on our choice of g(z). Since
k is the index for the basis that spans the representation space, the consid-
eration of the representation imposes restrictions on k.

9
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Evaluating the value of CI[k|k0] involves function g. Function g is explicitly
given by Eq. (23) for the case at hand; however, it is useful to consider a more
general case,

g(z) = az
2 + bz + c, (40)

where we assume
b

2 � 4ac < 0 , (41)

to keep the quadratic Casimir element c
(2) negative (see Eq. (4)). We also limit

a to be positive for the sake of notational simplicity. The flow generated by g(z)
in Eq. (40) is illustrated in Fig. 2.

z

L ⌘
p

|b2�4ac|
a

s!•

s!�•

z+

z�

Figure 2: Mapping of time t and space s onto z, generated by g(z) = az
2 + bz +

c ⌘ a(z � z+)(z � z�). Solid lines with arrows represent the flow of t. The gray
line connecting z± is a possible contour, C, where t is constant and s changes; in
particular, s ! ±• near z±, respectively.

The terms inside the braces in the definition of CI (38) can be easily demon-
strated to amount to

g
∂3

g

∂z3 + k

 
2

∂2
g

∂z2 � 1
g

✓
∂g

∂z

◆2
!
+

k3

g
=

1
g(z0)

⇣
�(b2 � 4ac)k + k3

⌘
, (42)

thus yielding

CI[k|k0] =
⇣
�(b2 � 4ac)k + k3

⌘ Z

C

dz

2pi

fk+k0(z)
g(z)

. (43)

A useful formula can be obtained by differentiating Eq. (7):

d fk = k
dz

g(z)
fk, (44)
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Possible constant multiplications are omitted for the sake of brevity.
A notable idiosyncrasy of the solution (26) is the appearance of the multival-

ued function arctan(kz), which may yield ambiguous multiplicative factors

e
pnk

n 2 Z, (28)

without a proper specification of the principal value. The reason for these mul-
tiple values is clear from Fig. 1. With the proper selection of the principal value
for arctan, t = �p

2 at the thick line between z = i and z = �i as illustrated in
Fig. 1. Along the time flow, however, t becomes p

2 after encircling either z = i

or z = �i. As t develops further, it returns to the same point on the z coordinate
with different values for t. To be more precise, the time and space coordinates
can be given by Eq. (22) as follows:
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z dz
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◆
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If we convert the argument of the logarithm in Eq. (29)to polar coordinates
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it is then simple to discern the time and space coordinates in terms of R and q
as follows:
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q +
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ln R = t + is. (31)

3 Conserved charges and the Virasoro algebra
The analysis above produces a set of (conformal) Killing vectors in the following
form:

g(z) fk(z). (32)

We can now define the conserved charges by integrating the Noether current,
which is the product of the energy momentum tensor and the Killing vector:

Lk ⌘
Z

C
dzg(z) fk(z)T(z). (33)

Here, C denotes a contour on which t is constant and s takes all possible values.
An example of such a contour is depicted as a gray line in Fig. 1. The definition
of the anti-holomorphic charge, L̄k, should be trivial. It should be noted that L0
and L̄0 are significant charges among others because

L0 = L1 + L�1, L̄0 = L̄1 + L̄�1, (34)
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Performing the contour integral around z
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where the last term of the righthand side is nothing but

(k � k0)Lk+k0 .

If we denote the integral part of the central extension in the first term of the
righthand side of Eq. (37) as
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the commutation relations read

[Lk,Lk0 ] = (k � k0)Lk+k0 +
cCFT

12
CI[k|k0]. (39)

For the charges, Lk, to satisfy the Virasoro algebra in Eq. (39), CI[k|k0] must van-
ish unless k + k0 = 0. Otherwise, a certain part of the Jacobi identity is breached
(see, for example, [20]). In the following, we evaluate CI[k|k0] explicitly to verify
whether CI[k|k0] can be zero for k + k0 6= 0.
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Evaluating the value of CI[k|k0] involves function g. Function g is explicitly
given by Eq. (23) for the case at hand; however, it is useful to consider a more
general case,

g(z) = az
2 + bz + c, (40)

where we assume
b

2 � 4ac < 0 , (41)

to keep the quadratic Casimir element c
(2) negative (see Eq. (4)). We also limit

a to be positive for the sake of notational simplicity. The flow generated by g(z)
in Eq. (40) is illustrated in Fig. 2.
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Figure 2: Mapping of time t and space s onto z, generated by g(z) = az
2 + bz +

c ⌘ a(z � z+)(z � z�). Solid lines with arrows represent the flow of t. The gray
line connecting z± is a possible contour, C, where t is constant and s changes; in
particular, s ! ±• near z±, respectively.
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where the last term of the righthand side is nothing but
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the commutation relations read

[Lk,Lk0 ] = (k � k0)Lk+k0 +
cCFT

12
CI[k|k0]. (39)

For the charges, Lk, to satisfy the Virasoro algebra in Eq. (39), CI[k|k0] must van-
ish unless k + k0 = 0. Otherwise, a certain part of the Jacobi identity is breached
(see, for example, [20]). In the following, we evaluate CI[k|k0] explicitly to verify
whether CI[k|k0] can be zero for k + k0 6= 0.
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(see, for example, [20]). In the following, we evaluate CI[k|k0] explicitly to verify
whether CI[k|k0] can be zero for k + k0 6= 0.
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Evaluating the value of CI[k|k0] involves function g. Function g is explicitly
given by Eq. (23) for the case at hand; however, it is useful to consider a more
general case,

g(z) = az
2 + bz + c, (40)

where we assume
b

2 � 4ac < 0 , (41)

to keep the quadratic Casimir element c
(2) negative (see Eq. (4)). We also limit

a to be positive for the sake of notational simplicity. The flow generated by g(z)
in Eq. (40) is illustrated in Fig. 2.

z

L ⌘
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|b2�4ac|
a

s!•

s!�•

z+

z�

Figure 2: Mapping of time t and space s onto z, generated by g(z) = az
2 + bz +

c ⌘ a(z � z+)(z � z�). Solid lines with arrows represent the flow of t. The gray
line connecting z± is a possible contour, C, where t is constant and s changes; in
particular, s ! ±• near z±, respectively.

The terms inside the braces in the definition of CI (38) can be easily demon-
strated to amount to
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thus yielding
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⌘ Z

C

dz

2pi

fk+k0(z)
g(z)

. (43)

A useful formula can be obtained by differentiating Eq. (7):

d fk = k
dz

g(z)
fk, (44)
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which further simplifies the integral in Eq. (43) as
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for k + k0 6= 0. If we denote two roots of g(z) = 0 as z±, whose imaginary parts
are positive and negative, respectively, they constitute the boundary of C. Thus,
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2pi(k + k0)
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To evaluate fk+k0 at z±, expression (26) must be generalized as follows:
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where possible multiplicative constants are neglected.

It is apparent that fk+k0(z+) and fk+k0(z�) are divergent; as a result, the eval-
uation of Eq. (46) is non-trivial. Therefore, we introduce the cut-off, #, near the
fixed points z = z±, bearing in mind the application to entanglement entropy
(Fig. 3).
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Figure 3: Cut-off region near z+ (Colored in gray). The radius of the cut-off is #
in the z plane.

The structure near z± in terms of t and s can be determined from the follow-
ing generalization of Eq. (29):
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z dz
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1
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. (48)

Introducing L as the length of the separation between z+ and z� in the imagi-
nary direction,

z+ � z� = i

p
|b2 � 4ac|

a
⌘ iL, (49)
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righthand side of Eq. (37) as

CI[k|k0] ⌘
Z

C

dz

2pi

(
g

∂3
g

∂z3 + k

 
2

∂2
g

∂z2 � 1
g

✓
∂g

∂z

◆2
!
+

k3

g

)
fk+k0(z), (38)

the commutation relations read

[Lk,Lk0 ] = (k � k0)Lk+k0 +
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For the charges, Lk, to satisfy the Virasoro algebra in Eq. (39), CI[k|k0] must van-
ish unless k + k0 = 0. Otherwise, a certain part of the Jacobi identity is breached
(see, for example, [20]). In the following, we evaluate CI[k|k0] explicitly to verify
whether CI[k|k0] can be zero for k + k0 6= 0.
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where possible multiplicative constants are neglected.

It is apparent that fk+k0(z+) and fk+k0(z�) are divergent; as a result, the eval-
uation of Eq. (46) is non-trivial. Therefore, we introduce the cut-off, #, near the
fixed points z = z±, bearing in mind the application to entanglement entropy
(Fig. 3).
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nary direction,
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which further simplifies the integral in Eq. (43) as
Z

C

dz
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fk+k0(z)
g(z)

=
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d fk+k0

2pi(k + k0)
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for k + k0 6= 0. If we denote two roots of g(z) = 0 as z±, whose imaginary parts
are positive and negative, respectively, they constitute the boundary of C. Thus,

fk+k0

2pi(k + k0)
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∂C

=
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2pi(k + k0)
( fk+k0(z+)� fk+k0(z�)) . (46)

To evaluate fk+k0 at z±, expression (26) must be generalized as follows:
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= exp
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k
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z � z�

◆◆
,

(47)
where possible multiplicative constants are neglected.

It is apparent that fk+k0(z+) and fk+k0(z�) are divergent; as a result, the eval-
uation of Eq. (46) is non-trivial. Therefore, we introduce the cut-off, #, near the
fixed points z = z±, bearing in mind the application to entanglement entropy
(Fig. 3).
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Cut-off

Evaluating the value of CI[k|k0] involves function g. Function g is explicitly
given by Eq. (23) for the case at hand; however, it is useful to consider a more
general case,

g(z) = az
2 + bz + c, (40)

where we assume
b

2 � 4ac < 0 , (41)

to keep the quadratic Casimir element c
(2) negative (see Eq. (4)). We also limit

a to be positive for the sake of notational simplicity. The flow generated by g(z)
in Eq. (40) is illustrated in Fig. 2.

z

L ⌘
p

|b2�4ac|
a

s!•

s!�•

z+

z�

Figure 2: Mapping of time t and space s onto z, generated by g(z) = az
2 + bz +

c ⌘ a(z � z+)(z � z�). Solid lines with arrows represent the flow of t. The gray
line connecting z± is a possible contour, C, where t is constant and s changes; in
particular, s ! ±• near z±, respectively.

The terms inside the braces in the definition of CI (38) can be easily demon-
strated to amount to

g
∂3

g

∂z3 + k

 
2

∂2
g

∂z2 � 1
g

✓
∂g

∂z

◆2
!
+

k3

g
=

1
g(z0)

⇣
�(b2 � 4ac)k + k3

⌘
, (42)

thus yielding

CI[k|k0] =
⇣
�(b2 � 4ac)k + k3

⌘ Z

C

dz

2pi

fk+k0(z)
g(z)

. (43)

A useful formula can be obtained by differentiating Eq. (7):

d fk = k
dz

g(z)
fk, (44)
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for the selection of g(z), as in Eq. (23).
The operator product expansion of the energy momentum tensor is gov-

erned by conformal symmetry on the z-plane and takes the following form:

T(z)T(z0) ⇠ cCFT/2
(z � z0)4 +

2T(z0)
(z � z0)2 +

∂z0T(z
0)

z � z0
+ · · · , (35)

where cCFT is the central charge of CFT in question. Then, the commutation rela-
tions among the conserved charges Lk’s lead to the following integration:

[Lk,Lk0 ] =
1

2pi

Z

C
dz

0
g(z0) fk0(z

0)
Z

z
0

z

dz

2pi
g(z) fk(z)T

�
T(z)T(z0)

�

=
1

2pi

Z

C
dz

0
g(z0) fk0(z

0)
Z

z
0

z

dz

2pi
g(z) fk(z) (36)

⇥
✓

cCFT/2
(z � z0)4 +

2T(z0)
(z � z0)2 +

∂z0T(z
0)

z � z0

◆
.

Performing the contour integral around z
0 in Eq. (36) yields

[Lk,Lk0 ] =
cCFT

12

Z

C

dz
0

2pi

(
g

∂3
g

∂z03
+ k

 
2

∂2
g

∂z02
� 1

g

✓
∂g

∂z0

◆2
!
+

k3

g

)
fk+k0(z

0)

+(k � k0)
Z

C

dz
0

2pi
g(z0) fk+k0(z

0)T(z0), (37)

where the last term of the righthand side is nothing but

(k � k0)Lk+k0 .

If we denote the integral part of the central extension in the first term of the
righthand side of Eq. (37) as

CI[k|k0] ⌘
Z

C

dz

2pi

(
g

∂3
g

∂z3 + k

 
2

∂2
g

∂z2 � 1
g

✓
∂g

∂z

◆2
!
+

k3

g

)
fk+k0(z), (38)

the commutation relations read

[Lk,Lk0 ] = (k � k0)Lk+k0 +
cCFT

12
CI[k|k0]. (39)

For the charges, Lk, to satisfy the Virasoro algebra in Eq. (39), CI[k|k0] must van-
ish unless k + k0 = 0. Otherwise, a certain part of the Jacobi identity is breached
(see, for example, [20]). In the following, we evaluate CI[k|k0] explicitly to verify
whether CI[k|k0] can be zero for k + k0 6= 0.

7

s

t

1
aL

ln( L

# )

- 1
aL

ln( L

# )

� p
aL

p
aL

z=z+

z=z�

Figure 4: Time translation in s � t coordinates. The cut-off is represented by the
dashed line adjacent to the gray-colored area, where the fixed points, z+ or z�
in the z-plane, are located infinitely far away. The circles with radius # in the
z-plane, and the cut-off in the s coordinate is located at s = ± 1

aL
ln( L

# ).

and setting z as the cut-off boundary z = z± + #e
iq in the above equation, we

obtain
t + is ⇠

±q � p
2

aL
± i

1
aL

· ln
✓

L

#

◆
at z ⇠ z± and # ⇠ 0. (50)

Thus, in terms of t and s, the cut-off boundaries exist at

z = z± + e
⌥aLs

e
±i(aLt+p/2), (51)

respectively; Fig. 4 provides a depiction. Equation (46) can then be evaluated
using the cut-off, and the expression of CI[k|k0] for k + k0 6= 0 can be obtained
as follows:

CI[k|k0] =
⇣
�(b2 � 4ac)k + k3

⌘
e

k+k0
aL (q�p

2 )

2pi(k + k0)

⇥


exp
✓

i
k + k0

aL
ln

✓
L

#

◆◆
� exp

✓
�i

k + k0

aL
ln

✓
L

#

◆◆�
. (52)

Finally, we uncover that there should be an integer n so that

2i
k + k0

aL
ln

✓
L

#

◆
= 2pin, (53)
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which further simplifies the integral in Eq. (43) as
Z

C

dz

2pi

fk+k0(z)
g(z)

=
Z

C

d fk+k0

2pi(k + k0)
=

fk+k0

2pi(k + k0)

����
∂C

, (45)

for k + k0 6= 0. If we denote two roots of g(z) = 0 as z±, whose imaginary parts
are positive and negative, respectively, they constitute the boundary of C. Thus,

fk+k0

2pi(k + k0)

����
∂C

=
1

2pi(k + k0)
( fk+k0(z+)� fk+k0(z�)) . (46)

To evaluate fk+k0 at z±, expression (26) must be generalized as follows:

fk(z) = exp
✓

k
Z

z dz

a(z � z+)(z � z�)

◆
= exp

✓
k

a(z+ � z�)
ln

✓
z � z+

z � z�

◆◆
,

(47)
where possible multiplicative constants are neglected.

It is apparent that fk+k0(z+) and fk+k0(z�) are divergent; as a result, the eval-
uation of Eq. (46) is non-trivial. Therefore, we introduce the cut-off, #, near the
fixed points z = z±, bearing in mind the application to entanglement entropy
(Fig. 3).

#
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•

Figure 3: Cut-off region near z+ (Colored in gray). The radius of the cut-off is #
in the z plane.

The structure near z± in terms of t and s can be determined from the follow-
ing generalization of Eq. (29):

t + is =
Z

z dz

az2 + bz + c
=

1
a(z+ � z�)

ln
✓

z � z+

z � z�

◆
. (48)

Introducing L as the length of the separation between z+ and z� in the imagi-
nary direction,

z+ � z� = i

p
|b2 � 4ac|

a
⌘ iL, (49)
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The operator product expansion of the energy momentum tensor is gov-
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(z � z0)4 +

2T(z0)
(z � z0)2 +
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+ · · · , (35)

where cCFT is the central charge of CFT in question. Then, the commutation rela-
tions among the conserved charges Lk’s lead to the following integration:
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where the last term of the righthand side is nothing but

(k � k0)Lk+k0 .

If we denote the integral part of the central extension in the first term of the
righthand side of Eq. (37) as

CI[k|k0] ⌘
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the commutation relations read

[Lk,Lk0 ] = (k � k0)Lk+k0 +
cCFT

12
CI[k|k0]. (39)

For the charges, Lk, to satisfy the Virasoro algebra in Eq. (39), CI[k|k0] must van-
ish unless k + k0 = 0. Otherwise, a certain part of the Jacobi identity is breached
(see, for example, [20]). In the following, we evaluate CI[k|k0] explicitly to verify
whether CI[k|k0] can be zero for k + k0 6= 0.
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and setting z as the cut-off boundary z = z± + #e
iq in the above equation, we

obtain
t + is ⇠

±q � p
2

aL
± i

1
aL

· ln
✓

L

#

◆
at z ⇠ z± and # ⇠ 0. (50)

Thus, in terms of t and s, the cut-off boundaries exist at

z = z± + e
⌥aLs

e
±i(aLt+p/2), (51)

respectively; Fig. 4 provides a depiction. Equation (46) can then be evaluated
using the cut-off, and the expression of CI[k|k0] for k + k0 6= 0 can be obtained
as follows:

CI[k|k0] =
⇣
�(b2 � 4ac)k + k3

⌘
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aL (q�p

2 )
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⇥

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✓
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#
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� exp

✓
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ln
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◆◆�
. (52)

Finally, we uncover that there should be an integer n so that

2i
k + k0

aL
ln

✓
L

#

◆
= 2pin, (53)
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and setting z as the cut-off boundary z = z± + #e
iq in the above equation, we

obtain
t + is ⇠

±q � p
2
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± i

1
aL
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✓

L

#

◆
at z ⇠ z± and # ⇠ 0. (50)

Thus, in terms of t and s, the cut-off boundaries exist at

z = z± + e
⌥aLs

e
±i(aLt+p/2), (51)

respectively; Fig. 4 provides a depiction. Equation (46) can then be evaluated
using the cut-off, and the expression of CI[k|k0] for k + k0 6= 0 can be obtained
as follows:

CI[k|k0] =
⇣
�(b2 � 4ac)k + k3

⌘
e
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aL (q�p

2 )

2pi(k + k0)
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exp
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. (52)

Finally, we uncover that there should be an integer n so that
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◆
= 2pin, (53)
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for Eq. (52) to vanish.
We could require that k, which was originally introduced as the label for the

(differential) operator, takes the following values:

k =
paL

ln (L/#)
n, n 2 Z or Z +

1
2

. (54)

However, we rather homogeneously rescale the parameters a, b, c in g(z), which
governs the time development,

a ! xa, b ! xb, c ! xc, i.e. g(z) ! xg(z), (55)

and demand
paL

ln (L/#)
= 1 (56)

so that k can be either an integer or half-integer. Noting that L is invariant under
the rescaling (55), it is evident that selecting x as

x =
ln

�
L

#

�

apL
(57)

satisfies Eq. (56).
The rescaling (55) also affects the range of t and s as

� p < s < p, � p2

ln
�

L

#

� < t <
p2

ln
�

L

#

� . (58)

Thus, there is now a torus to be integrated over with the moduli parameter

t = i
p

ln (L/#)
, (59)

as depicted in Fig. 5.
The introduction of cut-off # and the corresponding rescaling of g(z) elimi-

nate the undesirable contribution to CI[k|k0] for k 6= �k0. However, the case for
k = �k0 yields

CI[k|� k] =
⇣

k3 � (b2 � 4ac)k
⌘ Z

C"

dz

2pi

1
g(z)

, (60)

by invoking Eqs. (7) and (43). Here we denote the contour with the cut-off as
C#. The above expression can be further evaluated as

CI[k|� k] =
⇣

k3 � (b2 � 4ac)k
⌘ ln L

# +
ip
2

apL
. (61)
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Thus, in terms of t and s, the cut-off boundaries exist at
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respectively; Fig. 4 provides a depiction. Equation (46) can then be evaluated
using the cut-off, and the expression of CI[k|k0] for k + k0 6= 0 can be obtained
as follows:
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for the selection of g(z), as in Eq. (23).
The operator product expansion of the energy momentum tensor is gov-
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+ · · · , (35)

where cCFT is the central charge of CFT in question. Then, the commutation rela-
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[Lk,Lk0 ] =
1

2pi

Z

C
dz

0
g(z0) fk0(z

0)
Z

z
0

z

dz

2pi
g(z) fk(z)T

�
T(z)T(z0)

�

=
1

2pi

Z

C
dz

0
g(z0) fk0(z

0)
Z

z
0

z

dz

2pi
g(z) fk(z) (36)

⇥
✓

cCFT/2
(z � z0)4 +

2T(z0)
(z � z0)2 +

∂z0T(z
0)

z � z0

◆
.

Performing the contour integral around z
0 in Eq. (36) yields

[Lk,Lk0 ] =
cCFT

12

Z

C

dz
0

2pi

(
g

∂3
g

∂z03
+ k

 
2

∂2
g

∂z02
� 1

g

✓
∂g

∂z0

◆2
!
+

k3

g

)
fk+k0(z

0)

+(k � k0)
Z

C

dz
0

2pi
g(z0) fk+k0(z

0)T(z0), (37)

where the last term of the righthand side is nothing but

(k � k0)Lk+k0 .

If we denote the integral part of the central extension in the first term of the
righthand side of Eq. (37) as

CI[k|k0] ⌘
Z

C

dz

2pi

(
g

∂3
g

∂z3 + k

 
2

∂2
g

∂z2 � 1
g

✓
∂g

∂z

◆2
!
+

k3

g

)
fk+k0(z), (38)

the commutation relations read

[Lk,Lk0 ] = (k � k0)Lk+k0 +
cCFT

12
CI[k|k0]. (39)

For the charges, Lk, to satisfy the Virasoro algebra in Eq. (39), CI[k|k0] must van-
ish unless k + k0 = 0. Otherwise, a certain part of the Jacobi identity is breached
(see, for example, [20]). In the following, we evaluate CI[k|k0] explicitly to verify
whether CI[k|k0] can be zero for k + k0 6= 0.
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and setting z as the cut-off boundary z = z± + #e
iq in the above equation, we

obtain
t + is ⇠

±q � p
2

aL
± i

1
aL

· ln
✓

L

#

◆
at z ⇠ z± and # ⇠ 0. (50)

Thus, in terms of t and s, the cut-off boundaries exist at

z = z± + e
⌥aLs

e
±i(aLt+p/2), (51)

respectively; Fig. 4 provides a depiction. Equation (46) can then be evaluated
using the cut-off, and the expression of CI[k|k0] for k + k0 6= 0 can be obtained
as follows:

CI[k|k0] =
⇣
�(b2 � 4ac)k + k3

⌘
e

k+k0
aL (q�p

2 )

2pi(k + k0)

⇥


exp
✓

i
k + k0

aL
ln

✓
L

#

◆◆
� exp

✓
�i

k + k0

aL
ln

✓
L

#

◆◆�
. (52)

Finally, we uncover that there should be an integer n so that

2i
k + k0

aL
ln

✓
L

#

◆
= 2pin, (53)
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Thus, in terms of t and s, the cut-off boundaries exist at

z = z± + e
⌥aLs

e
±i(aLt+p/2), (51)

respectively; Fig. 4 provides a depiction. Equation (46) can then be evaluated
using the cut-off, and the expression of CI[k|k0] for k + k0 6= 0 can be obtained
as follows:

CI[k|k0] =
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✓

i
k + k0

aL
ln

✓
L

#

◆◆
� exp

✓
�i

k + k0

aL
ln

✓
L

#

◆◆�
. (52)

Finally, we uncover that there should be an integer n so that

2i
k + k0

aL
ln

✓
L

#

◆
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for Eq. (52) to vanish.
We could require that k, which was originally introduced as the label for the

(differential) operator, takes the following values:

k =
paL

ln (L/#)
n, n 2 Z or Z +

1
2

. (54)

However, we rather homogeneously rescale the parameters a, b, c in g(z), which
governs the time development,

a ! xa, b ! xb, c ! xc, i.e. g(z) ! xg(z), (55)

and demand
paL

ln (L/#)
= 1 (56)

so that k can be either an integer or half-integer. Noting that L is invariant under
the rescaling (55), it is evident that selecting x as

x =
ln

�
L

#

�

apL
(57)

satisfies Eq. (56).
The rescaling (55) also affects the range of t and s as

� p < s < p, � p2

ln
�

L

#

� < t <
p2

ln
�

L

#

� . (58)

Thus, there is now a torus to be integrated over with the moduli parameter

t = i
p

ln (L/#)
, (59)

as depicted in Fig. 5.
The introduction of cut-off # and the corresponding rescaling of g(z) elimi-

nate the undesirable contribution to CI[k|k0] for k 6= �k0. However, the case for
k = �k0 yields

CI[k|� k] =
⇣

k3 � (b2 � 4ac)k
⌘ Z

C"

dz

2pi

1
g(z)

, (60)

by invoking Eqs. (7) and (43). Here we denote the contour with the cut-off as
C#. The above expression can be further evaluated as

CI[k|� k] =
⇣

k3 � (b2 � 4ac)k
⌘ ln L

# +
ip
2

apL
. (61)
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Evaluating the value of CI[k|k0] involves function g. Function g is explicitly
given by Eq. (23) for the case at hand; however, it is useful to consider a more
general case,

g(z) = az
2 + bz + c, (40)

where we assume
b

2 � 4ac < 0 , (41)

to keep the quadratic Casimir element c
(2) negative (see Eq. (4)). We also limit

a to be positive for the sake of notational simplicity. The flow generated by g(z)
in Eq. (40) is illustrated in Fig. 2.

z

L ⌘
p

|b2�4ac|
a

s!•

s!�•

z+

z�

Figure 2: Mapping of time t and space s onto z, generated by g(z) = az
2 + bz +

c ⌘ a(z � z+)(z � z�). Solid lines with arrows represent the flow of t. The gray
line connecting z± is a possible contour, C, where t is constant and s changes; in
particular, s ! ±• near z±, respectively.

The terms inside the braces in the definition of CI (38) can be easily demon-
strated to amount to

g
∂3

g

∂z3 + k

 
2

∂2
g

∂z2 � 1
g

✓
∂g

∂z

◆2
!
+

k3

g
=

1
g(z0)

⇣
�(b2 � 4ac)k + k3

⌘
, (42)

thus yielding

CI[k|k0] =
⇣
�(b2 � 4ac)k + k3

⌘ Z

C

dz

2pi

fk+k0(z)
g(z)

. (43)

A useful formula can be obtained by differentiating Eq. (7):

d fk = k
dz

g(z)
fk, (44)
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In terms of , identical

Torus geometry

which further simplifies the integral in Eq. (43) as
Z

C

dz

2pi

fk+k0(z)
g(z)

=
Z

C

d fk+k0

2pi(k + k0)
=

fk+k0

2pi(k + k0)

����
∂C

, (45)

for k + k0 6= 0. If we denote two roots of g(z) = 0 as z±, whose imaginary parts
are positive and negative, respectively, they constitute the boundary of C. Thus,

fk+k0

2pi(k + k0)

����
∂C

=
1

2pi(k + k0)
( fk+k0(z+)� fk+k0(z�)) . (46)

To evaluate fk+k0 at z±, expression (26) must be generalized as follows:

fk(z) = exp
✓

k
Z

z dz

a(z � z+)(z � z�)

◆
= exp

✓
k

a(z+ � z�)
ln

✓
z � z+

z � z�

◆◆
,

(47)
where possible multiplicative constants are neglected.

It is apparent that fk+k0(z+) and fk+k0(z�) are divergent; as a result, the eval-
uation of Eq. (46) is non-trivial. Therefore, we introduce the cut-off, #, near the
fixed points z = z±, bearing in mind the application to entanglement entropy
(Fig. 3).

#
z+

s!
•

Figure 3: Cut-off region near z+ (Colored in gray). The radius of the cut-off is #
in the z plane.

The structure near z± in terms of t and s can be determined from the follow-
ing generalization of Eq. (29):

t + is =
Z

z dz

az2 + bz + c
=

1
a(z+ � z�)

ln
✓

z � z+

z � z�

◆
. (48)

Introducing L as the length of the separation between z+ and z� in the imagi-
nary direction,

z+ � z� = i

p
|b2 � 4ac|

a
⌘ iL, (49)
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z-plane; thus, it is virtually a torus geometry.

by invoking Eqs. (7) and (43). Here we denote the contour with the cut-off as
C#. The above expression can be further evaluated as

CI[k|� k] =
⇣

k3 � (b2 � 4ac)k
⌘ ln L

# +
ip
2

apL
. (62)

Employing the divergent rescaling (56) and neglecting the finite ip/2 term,

CI[k|� k] =
⇣

k3 � x2(b2 � 4ac)k
⌘

. (63)

Thus, we arrive at the following Virasoro algebra:

[Lk,Lk0 ] = (k � k0)Lk+k0 +
cCFT

12

⇣
k3 � x2(b2 � 4ac)k

⌘
dk,�k0 , (64)

[Lk,Lk0 ] = (k � k0)Lk+k0 +
cCFT

12
k3dk,�k0 (65)

where k is either an integer or half-integer. In addition, a, b, and c are the original
values before rescaling, as introduced in Eq. (40). However, Lk is defined by
Eq. (33) with the rescaled xg(z) and fk(z) which are also defined by the rescaled
xg(z) in Eq. (6).
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where k is either an integer or half-integer. In addition, a, b, and c are the original
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for Eq. (52) to vanish.
We could require that k, which was originally introduced as the label for the

(differential) operator, takes the following values:

k =
paL

ln (L/#)
n, n 2 Z or Z +

1
2

. (55)

However, we rather homogeneously rescale the parameters a, b, c in g(z), which
governs the time development,

a ! xa, b ! xb, c ! xc, i.e. g(z) ! xg(z), (56)

and demand
paL

ln (L/#)
= 1 (57)

so that k can be either an integer or half-integer. Noting that L is invariant under
the rescaling (56), it is evident that selecting x as

x =
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apL
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satisfies Eq. (57).
The rescaling (56) also affects the range of t and s as
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� . (59)

Thus, there is now a torus to be integrated over with the moduli parameter

t = i
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ln (L/#)
, (60)

as depicted in Fig. 5.
The introduction of cut-off # and the corresponding rescaling of g(z) elimi-

nate the undesirable contribution to CI[k|k0] for k 6= �k0. However, the case for
k = �k0 yields

CI[k|� k] =
⇣

k3 � (b2 � 4ac)k
⌘ Z

C"

dz
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1
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Figure 7: (a) The time development from the section L to L
0 by the generator

with b
2 � 4ac > 0. (b) The section L is complimented by the rest of the space L

c,
which would also develop into the fixed point as t ! •. The entire sphere can
be divided into two hemisphere, (c) and (d), each boundary of which accommo-
dates the states hfL

j
| and |fL

i
i respectively. Glueing (c) and (d) at the red dashed

line yields Eq. (72), or Fig. 8 (a).

where t takes the negative values (Fig. 7 (c)).
One can the glue Eqs. (70) and (71) (or (c) and (d) of Fig.7 ) to obtain the

following expression:

hfL

j
|0ih0|fL

i
i =

Z

f(0�,x)=fL

j
(x),f(0+,x)=fL

i
(x)

Df(t, x)e�S. (73)

Another way to explicate Eq. (72) is to consider a cut with the length L on
each side of which hfL

j
| and |fL

i
i resides respectively. The path integration is

performed on the entire Riemann sphere except the cut L (Fig.8(a)). One can
convince oneself of Eq. (72) by integrating over the cut L with the condition
fL

j
(x) = fL

i
(x) since the integration (or the trace) yields the partition function

h0|0i, which is nothing but the path integration over the entire sphere.
Note the lefthand side of Eq. (72) takes the form of a density matrix which

corresponds to the vacuum. What is implicit here is that this density matrix
depends only on the sector related to L, since the sector originated from the
compliment space L

c is already integrated out in the righthand side of Eq. (72).
Therefore this matrix is the reduced density matrix of the vacuum:

hfL

i
|0ih0|fL

j
i ⌘ Z ⇥ (r)

ij
= (trLc (|0ih0|))

ij
. (74)

where Z is the partition function of the entire system:

Z = Â
i

hfL

i
|0ih0|fL

i
i = Â

i

(trLc (|0ih0|))
ii

. (75)

15

where H is the generator of the time development, namely the Hamiltonian,
and L

0 is the region developed from the original segment L during time period
t.

z

L

L
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L
c

Figure 6: The flow of time t can be considered to begin at a section of space with
length L (solid line). We refer to this section of space as L without fear of con-
fusion. The rest of the space, including infinity, is depicted as a dashed line and
denoted L

c. After sweeping the entire complex plane, including infinity, with
the exception of the cut-off region (gray dots), the flow returns to the original
line.

If the time-flow generated by H has a fixed point as t increases to infinity as
shown in Fig. 7 (a), any state would flow into the lowest energy state, that is,
the vacuum:

|fL
0

i
(t)i = e

�tH|fL

i
i ! |0i. (70)

The situation can be succinctly summarized in the following path integral:

h0|fL

i
i =

Z
DfL

c

(x
c)

Z

f(0,x)=fL

i
(x),f(0,xc)=fLc (xc)

Df(t�0, x)e�S, (71)

where L
c is the space compliment to L (Fig. 7 (b)), and we attach either L

c or the
superscript c to the functions, the states, the coordinate that are associated with
L

c. See Fig. 7 (d). Also S is the appropriate conformal symmetric action. Note
that t should take only positive values, hence the subscript � 0 is attached. The
Hermitian conjugation of Eq. (70) with a different state |fL

j
i on the L can be

written as

hfL

j
|0i =

Z
DfL

c

(x
c)

Z

f(0,x)=fL

j
(x),f(0,xc)=fLc (xc)

Df(t0, x)e�S, (72)
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The reduced density matrix r is normalized as

Â
i

(r)
ii
= 1. (76)

If the reduced density matrix can be written as the exponentiation of an her-
mitian operator:

r =
e
�THmod

tr (e�THmod)
=

e
�THmod

Z
(77)

the operator is called the modular Hamiltonian in the context of axiomatic quan-
tum field theory [21]. In the context of statistical physics, this operator is also
called the entanglement Hamiltonian [22–28]. In the case at hand, the modular
Hamiltonian in question is nothing but

Hmod = aL1 + bL0 + cL�1 + aL̄1 + bL̄0 + cL̄�1 = L0 + L̄0, (78)

with b
2 � 4ac  0, which we have been studying in this note. This is because we

need the time flow that starts from one side of L where the state |fL

i
i is located,

and comes back to the other side of L where hfL

j
| is assigned, after covering the

entire sphere. See Fig. 8 (b) and compare it with Fig. 6.
With these setups, it is an almost trivial task to derive the entanglement

hamiltonian for the section L. Following the treatment in [29], it is convenient
to introduce the following generalization of the partition function:

Z(n) ⌘ tre
�nTHmod = Z

ntrrn, (79)
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Hamiltonian Hmod.

The reduced density matrix r is normalized as

Â
i

(r)
ii
= 1. (76)

If the reduced density matrix can be written as the exponentiation of an her-
mitian operator:

r =
e
�THmod

tr (e�THmod)
=

e
�THmod

Z
(77)

the operator is called the modular Hamiltonian in the context of axiomatic quan-
tum field theory [21]. In the context of statistical physics, this operator is also
called the entanglement Hamiltonian [22–28]. In the case at hand, the modular
Hamiltonian in question is nothing but

Hmod = aL1 + bL0 + cL�1 + aL̄1 + bL̄0 + cL̄�1 = L0 + L̄0, (78)

with b
2 � 4ac  0, which we have been studying in this note. This is because we

need the time flow that starts from one side of L where the state |fL

i
i is located,

and comes back to the other side of L where hfL

j
| is assigned, after covering the

entire sphere. See Fig. 8 (b) and compare it with Fig. 6.
With these setups, it is an almost trivial task to derive the entanglement

hamiltonian for the section L. Following the treatment in [29], it is convenient
to introduce the following generalization of the partition function:

Z(n) ⌘ tre
�nTHmod = Z

ntrrn, (79)
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Hamiltonian Hmod.

The reduced density matrix r is normalized as

Â
i

(r)
ii
= 1. (76)

If the reduced density matrix can be written as the exponentiation of an her-
mitian operator:

r =
e
�THmod

tr (e�THmod)
=

e
�THmod

Z
(77)

the operator is called the modular Hamiltonian in the context of axiomatic quan-
tum field theory [21]. In the context of statistical physics, this operator is also
called the entanglement Hamiltonian [22–28]. In the case at hand, the modular
Hamiltonian in question is nothing but

Hmod = aL1 + bL0 + cL�1 + aL̄1 + bL̄0 + cL̄�1 = L0 + L̄0, (78)

with b
2 � 4ac  0, which we have been studying in this note. This is because we

need the time flow that starts from one side of L where the state |fL

i
i is located,

and comes back to the other side of L where hfL

j
| is assigned, after covering the

entire sphere. See Fig. 8 (b) and compare it with Fig. 6.
With these setups, it is an almost trivial task to derive the entanglement

hamiltonian for the section L. Following the treatment in [29], it is convenient
to introduce the following generalization of the partition function:

Z(n) ⌘ tre
�nTHmod = Z

ntrrn, (79)

16

reduced density matrix

which includes the expression trrn. It is a well-known trick that the derivative
of trrn yields the entropy for the system governed by the density matrix r:

� d

dn
trrn

����
n=1

= �tr (r ln r) = S. (80)

Since we are treating the reduced density matrix here, we obtain the following
expression for the entanglement entropy:

S = � d

dn

Z(n)
Zn

����
n=1

=

✓
1 � n

d

dn

◆
ln Z(n)

����
n=1

. (81)

The partition function Z can be calculated through the integration over the
sphere, however the existence of the cut-off alter the integration to that on the
torus with the moduli parameter t (60) as argued earlier. By introducing

q = e
2pit, (82)

the partition function can be then expressed in the following familiar form:

Zt = trq
L0 q̄

L̄0 , (83)

where the subscript denotes the moduli parameter explicitly. While Ln is the
Virasoro charges on the torus, there should be the corresponding Virasoro al-
gebra on the sphere Ln, whose energy-momentum tensor differs due to the
Schwarzian derivative as

L0 = L0 �
cCFT

24
. (84)

Therefore, one can also express the partition function as follows;

Zt = q
(� cCFT

24 )q̄(�
c̄CFT

24 )trq
L0 q̄

L̄0 . (85)

To obtain Z(n) or Zt(n), one can simply replace q with q
n in the above expres-

sion. Noting the n dependence only enters in the following combination:

ln q
n = n ln q , ln q̄

n = n ln q̄, (86)

one can replace the n derivative in Eq. (80) with the derivative by ln q and ln q̄;

S =

✓
1 � ln q

∂

∂ ln q
� ln q̄

∂

∂ ln q̄

◆
ln Zt(ln q, ln q̄). (87)

One can further exploit the modular invariance of the partition function on the
torus by the following modular transformation:

t ! �1
t

. (88)
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����
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The partition function Z can be calculated through the integration over the
sphere, however the existence of the cut-off alter the integration to that on the
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q = e
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L0 q̄

L̄0 , (83)
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Virasoro charges on the torus, there should be the corresponding Virasoro al-
gebra on the sphere Ln, whose energy-momentum tensor differs due to the
Schwarzian derivative as

L0 = L0 �
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24
. (84)
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24 )q̄(�
c̄CFT

24 )trq
L0 q̄

L̄0 . (85)

To obtain Z(n) or Zt(n), one can simply replace q with q
n in the above expres-
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ln q
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n = n ln q̄, (86)
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S =

✓
1 � ln q

∂

∂ ln q
� ln q̄

∂

∂ ln q̄

◆
ln Zt(ln q, ln q̄). (87)

One can further exploit the modular invariance of the partition function on the
torus by the following modular transformation:

t ! �1
t

. (88)
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which would also develop into the fixed point as t ! •. The entire sphere can
be divided into two hemisphere, (c) and (d), each boundary of which accommo-
dates the states hfL

j
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line yields Eq. (72), or Fig. 8 (a).

where t takes the negative values (Fig. 7 (c)).
One can the glue Eqs. (70) and (71) (or (c) and (d) of Fig.7 ) to obtain the

following expression:
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j
|0ih0|fL

i
i =

Z

f(0�,x)=fL

j
(x),f(0+,x)=fL

i
(x)

Df(t, x)e�S. (73)

Another way to explicate Eq. (72) is to consider a cut with the length L on
each side of which hfL

j
| and |fL

i
i resides respectively. The path integration is

performed on the entire Riemann sphere except the cut L (Fig.8(a)). One can
convince oneself of Eq. (72) by integrating over the cut L with the condition
fL

j
(x) = fL

i
(x) since the integration (or the trace) yields the partition function

h0|0i, which is nothing but the path integration over the entire sphere.
Note the lefthand side of Eq. (72) takes the form of a density matrix which

corresponds to the vacuum. What is implicit here is that this density matrix
depends only on the sector related to L, since the sector originated from the
compliment space L

c is already integrated out in the righthand side of Eq. (72).
Therefore this matrix is the reduced density matrix of the vacuum:

hfL

i
|0ih0|fL

j
i ⌘ Z ⇥ (r)

ij
= (trLc (|0ih0|))

ij
. (74)

where Z is the partition function of the entire system:

Z = Â
i

hfL

i
|0ih0|fL

i
i = Â

i

(trLc (|0ih0|))
ii

. (75)
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The expression for the entanglement entropy becomes

S =

✓
1 + ln q

∂

∂ ln q
+ ln q̄

∂

∂ ln q̄

◆
ln Z� 1

t
(ln q, ln q̄), (89)

and
ln q = 2pi

✓
�1

t

◆
= �2 ln

L

#
. (90)

Then, as argued in [29], the contribution from the term trq
L0 to the partition

function is exponentially suppressed provided that L0 is a positive definite op-
erator. Since the relevant contribution comes only from the part q

(� cCFT

24 )q̄(�
c̄CFT

24 ),
we arrive at

S =
cCFT + c̄CFT

6
ln

L

#
, (91)

which is in accordance with the known result.
Thus we have established the relation between our formalism and the entan-

glement entropy. In our treatment, the cut-off which is needed in the expression
of the entanglement entropy is naturally and geometrically introduced. The
boundary condition at the cut-off is also determined from the consistency. The
entanglement entropy and the cut-off boundary condition has been also dis-
cussed in the literature [30–32].

Another interesting connection with our formalism can be found by consid-
ering the infinitesimal limit of the section L:

L =

p
|b2 � 4ac|

a
! 0. (92)

This limit could be achieved by, for example, taking b ! 1 while keeping a =
c = � 1

2 , which in the limit yields

g(z) = �1
2

z
2 + z � 1

2
= �1

2
(z � 1)2, (93)

and the following time developing operator:

L0 �
L1 + L�1

2
+ L̄0 �

L̄1 + L̄�1
2

. (94)

The above time developing operator is nothing but the SSD Hamiltonian [1,2,4].
To investigate this limit further, it is rather convenient to stick to the original

notion of k as in Eq. (55) rather than the rescaling by x. Then, it is apparent from
Eq. (55) that k takes continuous values in the L ! 0 limit. The factor between
k and the integer, paL

ln(L/#) also appears as the (inverse) factor in the expression
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of the central charge (63) yielding the delta function in the L ! 0 limit. There-
fore, simply taking the L ! 0 limit, we obtain the continuous Virasoro algebra,
which was found in [1, 2]:

[Lk,Lk0 ] = (k � k0)Lk+k0 +
cCFT

12
k3d(k + k0). (95)

Here we also took the step of the shifting L0 as Eq. (65).
In this limit, the new structure of the continuous Virasoro algebra emerges.

The details of this limiting procedure will be addressed in future publications.
It would be interesting to explore the implication of the SSD Hamiltonian and
the continuous Virasoro structure by taking the L ! 0 limit in the study of the
entanglement entropy.

Figure 9: The hatched disks are removed from the sphere and their boundaries
(dotted circles) are identified with each other, changing the topology from the
sphere to the torus. Note, in particular, that the shape of each boundary of the
disks is congruent with one of the time flows (arrowed lines).

The formalism developed in this note has a wider and intriguing applica-
tion. In the course of the above analysis, the existence of the cut-off, which itself
was introduced in order to preserve the consistency of the Virasoro algebra,
lead us to the Virasoro algebra on a torus. Therefore, the same analysis with the
arbitrary large “cut-off ” should yields the Virasoro algebra on the torus with
the arbitrary moduli parameter. This also opens up the possibility of construct-
ing the Virasoro algebra on a general two-dimensional surface with the higher
genus than the sphere and the torus, by contriving an appropriate time-flow
and applying the gluing procedure as the above (Fig. 9). It would be also in-
teresting to apply the present formalism to the calculation of the entanglement
entropy for multiple sections [33–35]. These possibilities will be pursued in fu-
ture studies.

In summary, we have shown that the time-flow associated with the class of
L1 + L�1 operator leads the Virasoro algebra on a torus. This fact was utilized to
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Hamiltonian Action 

c(2) = 1 c(2) = 0 c(2) = �1

Figure 2: Time translation on the Poincaré disk. On the boundary of the disk
(thick line), “time flow” is uniform without fixed point for R or c(2) = 1 case,
while it is limited to the finite region bounded by the two fixed points for R̄ or
c(2) = �1 case. H or c(2) = 0 case exhibits marginal behavior, and it has one
fixed point at infinity; The connection to dipolar quantization is apparent in this
depiction.

the other hand, the flow for R̄ is divided into the two segments on the edge. There,
the time flow in one segment covers only half of the entire edge. The situation
parallels the case studied by Bisognano and Wichmann [29], where the modular
Hamiltonian (automorphism, to be exact) maps the half of the entire space into it-
self. This resemblance further supports the interpretation presented above that R̄
corresponds to the modular Hamiltonian, or the entanglement Hamiltonian. Also,
one may consider the other half ”space” which cannot be reached by the time flow
as the space e↵ectively integrated out. This consideration further supports the
above mentioned connection to the entanglement Hamiltonian. The observation
here would also be useful in the study of SSD for the case of open strings, where
the setup of the upper half plane is natural.

In summary, we find the same structure in CQM as observed in 2d CFT where
the choice of the Hamiltonian leads to radial quantization, the dipolar quantization
or SSD, and the entanglement Hamiltonian, respectively. We identify the respec-
tive Hamiltonians in CQM using sl(2,R) symmetry. The findings here will o↵er a
simpler setup for the study of SSD and the entanglement Hamiltonians. It would
be also interesting to investigate further in the context of the conformal boot strap
approach [30] or the recent discussion of the CQM correlation function [31].

Acknowledgement: The author would like to thank N. Ishibashi, H. Katsura,
H. Kawai, K. Okunishi, S. Ryu, and the participants of the iTHEMS workshop
”Workshop on Sine square deformation and related topics, ” for fruitful discussions
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c(2) = 1 c(2) = 0 c(2) = �1

Figure 2: Time translation on the Poincaré disk. On the boundary of the disk
(thick line), “time flow” is uniform without fixed point for R or c(2) = 1 case,
while it is limited to the finite region bounded by the two fixed points for R̄ or
c(2) = �1 case. H or c(2) = 0 case exhibits marginal behavior, and it has one
fixed point at infinity; The connection to dipolar quantization is apparent in this
depiction.

the other hand, the flow for R̄ is divided into the two segments on the edge. There,
the time flow in one segment covers only half of the entire edge. The situation
parallels the case studied by Bisognano and Wichmann [29], where the modular
Hamiltonian (automorphism, to be exact) maps the half of the entire space into it-
self. This resemblance further supports the interpretation presented above that R̄
corresponds to the modular Hamiltonian, or the entanglement Hamiltonian. Also,
one may consider the other half ”space” which cannot be reached by the time flow
as the space e↵ectively integrated out. This consideration further supports the
above mentioned connection to the entanglement Hamiltonian. The observation
here would also be useful in the study of SSD for the case of open strings, where
the setup of the upper half plane is natural.

In summary, we find the same structure in CQM as observed in 2d CFT where
the choice of the Hamiltonian leads to radial quantization, the dipolar quantization
or SSD, and the entanglement Hamiltonian, respectively. We identify the respec-
tive Hamiltonians in CQM using sl(2,R) symmetry. The findings here will o↵er a
simpler setup for the study of SSD and the entanglement Hamiltonians. It would
be also interesting to investigate further in the context of the conformal boot strap
approach [30] or the recent discussion of the CQM correlation function [31].

Acknowledgement: The author would like to thank N. Ishibashi, H. Katsura,
H. Kawai, K. Okunishi, S. Ryu, and the participants of the iTHEMS workshop
”Workshop on Sine square deformation and related topics, ” for fruitful discussions
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Figure 7: Time translation on the Poincaré disk. On the boundary of the disk
(thick line), “time flow” is uniform without fixed point for R or c(2) = 1 case,
while it is limited to the finite region bounded by the two fixed points for R̄ or
c(2) = �1 case. H or c(2) = 0 case exhibits marginal behavior, and it has one
fixed point at infinity; The connection to dipolar quantization is apparent in this
depiction.
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Because the above generator resembles the ordinary Hamiltonian, it is clarifying
to draw the graph of the potential V (q) = g

2
1
q2 + c(2)

8 q2 for each case , where we

presume g > 0 4) . Figure 1 shows the potential for the cases where c(2) equals 1,
0, and �1, respectively. In the following, we investigate each case.

q

V (q)

c(2) = 1

c(2) = 0

c(2) = �1

Figure 1: Potential V (q) for c(2) = 1, 0, and �1.

Reference [13] observed that the invariance of the Casimir invariant (56) is
apparent from the expressions (51) - (53), if one imposes the commutation relation
over q and p as [q, p] = iI:
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4)
For negative g, despite the apparent unbounded potential, the corresponding Schrödinger

equation for c
(2)

= 0 has a stable solution up to g = �
1
4 , similar to the Breitenlohner-Freedman

bound [15] in higher dimensional AdS space.
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