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Decoupllng of left and right moving modes

Examp

Virasoro algebra f ed strings

HRRICEF DYV _RER

Open string Hamiltonian

The Hamiltonian of an open string is
given by

Ho:/c+2dmZT() | 55T,

T(z): the energy-momentum tensor.

Each term corresponds to Hamiltonians of left and right moving
modes, respectively, but they do not commute with each other due
to open boundary conditions on T'(z).

The Hamiltonian is given by the zeroth component of the Virasoro
operators: Lg. So, we do not encounter antiholomorphic Virasoro
operators in the open string system.
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Decoupling of left and right moving modes

BRICB T2 YA Vv ZRER

Sine-squre-like deformation

where g(z) is a holomorphic function satisfying g(£1) = dg(£1) = 0.
HgJr and H, are left and right moving modes of H,.

The simplest example of g(z) is given by
1 2 2
z)=——(r"—1)".
o(z) =~ (2~ 1)
If we change the variable as z = exp(if), the weighting function in H, is
changed to 2z~ 'g(z) = sin® f. Hence, the deformed Hamiltonian provides
a sort of generalization of the SSD Hamiltonian. In this sense, we call it

the sine-square-like deformation, or SSLD for short.
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Decoupling of left and right movmg modes
Example of string pro
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Virasoro algebra for closed strings

T'(z) is expanded by holomorphic Virasoro operators only:

oo
Z Lpz" "2,

n=—oo

By using this expansion form and the Virasoro algebra, we can
obtain a commutation relation of T'(2):

T(2), T(')] = ~(T(2) + T(')) 982, ') = 150%3(=.2),
where c¢ is the central charge of T'(z).

By this equation, we can calculate the commutation relation
between H and H, .

The important point is that surface terms appear in the calculation
as a result of derivatives of the delta function and these terms
include a singular factor §(£1,£1).
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Decoupling of Ieft and right movmg modes
Example of g
Virasoro algebra for closed strings

BRRICE T 91V RER

However, the singular surface terms turn out to vanish due to the
factors g(+1) and dg(+1), which are set to zero in the definition
of Hy.

As a result, we find
(. 1) =0

and then the deformed system is decomposed into the left and
right moving parts as in periodic systems.

Accordingly, it is concluded that the deformed system described by
H, corresponds not to an open string system, but to a closed
string system, although the Hamiltonian is constructed by a single
holomorphic energy-momentum tensor.

It should be noted that the zeros of ¢g(z) and Jg(z) at open
string boundaries cause the decoupling of the left and right

moving sectors!
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Decoupling of left and right moving modes
Example of string propagations
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Virasoro algebra for closed strings

Now, we will illustrate equal-time contours generated by the
Hamiltonian for the simplest function

1

9(z) =~ (2 = 1.

with a focus on emergence of left and right moving sectors.

According to Ishibashi-Tada, we introduce the parameters, ¢ and s,
into the worldsheet generated by H:

t+1 /Z dz 2
18 = _—
g(z) 22-1

where t denotes time and s parameterizes a string at a certain

time.
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Decoupling of left and right moving modes
Example of string propagations
Virasoro ra for closed strings

BRRICE T 91V RER

Figure: Equal-time contours on the z plane (solid lines). Dashed lines
with arrows denote evolution of time t.

These contours have a remarkable feature that the string
boundaries are fixed at z = +1 during propagation of the string.
One complex number ¢ 4 is corresponds to two points in the z

plane.
22/31



Decoupling of left and right moving modes

BRI BB Y —RET Example of string propagations

Virasoro a for closed strings

Accordingly, we introduce a complex coordinate w =t + is for the upper
half z plane and w =t + is for the lower half plane.

By this mapping, the upper half plane corresponds to the whole w plane,
and the lower half plane to the other w plane:
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Decoupling of left and right moving modes
Example of string propagations
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Virasoro algebra for closed strings

Hence, the equal-time contours by H, lead us to the worldsheet
which consists of two complex planes.

The two planes, w and w, corresponding to the upper and lower
half z planes are generated by the left and right moving

Hamiltonian, H; and H_, respectively.

Therefore, they can be regarded as holomorphic and
antiholomorphic worldsheets of a closed string.
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Decoupling of left and right moving modes

Example of string pro

— g S —mET,
S R Virasoro algebra for closed strings

Now that we have obtained two decoupled Hamiltonians for the left and
right moving sectors, we can construct two independent Virasoro
operators according to Ishibashi-Tada:

dz 5 dz
co- | G OTE), B =Y CIACIC]

t 271

where g(z) is the same function as that in the Hamiltonian H,.
fi(2) is defined by the differential equation

9(2) g 1) = KFu(2)

For a constant time ¢, C?. and C’. denote integral contours along the
equal-time line on the upper and lower half z plane, respectively.

We should note again that T'(z) including in £, and L, is the same
energy-momentum tensor of the open string system.
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S R Virasoro algebra for closed strings

Lo and L provide the left and right moving parts of the Hamiltonian,
thatis, Lo = H and Lo = H .
L, satisfies continuous Virasoro algebra:

(L) Lir] = (K — K ) Lprnr

c dz 0% 1 (39)2 +,£3,,_€'3

JR— PR _/ — e —— ’ .
12 ot 2mi =)\ 522 ~ 35 \ 22 5y (fe?)

Ishibashi-Tada '16
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Decoupling of left and ht moving modes
Example of string pr: tions

— g S —mET,
S R Virasoro algebra for closed strings

The right moving sector of the Virasoro operator £, can be also defined
by integration along the integration path on the lower half plane.
Similarly, £, satisfies the continuous Virasoro algebra.

Moreover, since Ci and C% have no intersections, £, and £, commute
with each other:

Ly, L£,0] = 0.

Thus, we have found the two independent Virasoro algebras in a
deformed open string system, which can be regarded as the
Virasoro algebras for closed strings, that is, the holomorphic and
antiholomorphic parts.

Kishimoto, Kitade and T.T ('18)
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Energy-momentum tensor and Virasoro algebra
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Energy-momentum tensor

We define an operator at the tachyon vacuum:
T(2) = e "O{Q b2)}
— T(2) 4 0h(2) jan (=) — (OR(2)) + ge*h<z>a%h<z>.

We find that T (z) satisfies the same OPE as T'(z) with zero central
charge:

1
e () 0T (),

Here, it should be noted that 7(z) includes not only operators but also a
function in its form.

Since h(z) is related to a coordinate frame of worldsheets, 7(z) has an

explicit dependence on the frame.
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Energy-momentum tensor and Virasoro algebra
Y ¥ F VEEICE T BEAEONIE

Virasoro algebra

By using 7 (z), we can define the continuous Virasoro operator at the
tachyon vacuum:

where the weighting function is related to h(z) as g(z) = ze"(*).

Since ¢*) has second order zeros at z = +1, g(z) also has second order
zeros at z = 1.

These operators satisfy the holomorphic and antiholomorophic
continuous Virasoro algebra for c =0. (Lo = Hy and Lo = H_.)

By definition of T (z), these operators commute with Q' :

[Qil:a ‘CK,:I == [Q/ﬂ:, [:,.;] = 0

Thus, we have found the continuous Virasoro algebra at the tachyon
vacuum. 29/31
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Figure: String pictures before and after SSLD. The solid and dashed lines
correspond to holomorphic and antiholomorphic parts of a string. As a
result of SSLD, open string boundaries (black dots) become joined and
an open string divides to holomorphic and antiholomorphic strings.
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